Home

Awesome

Audio Generation Evaluation

This toolbox aims to unify audio generation model evaluation for easier future comparison.

Quick Start

First, prepare the environment

pip install git+https://github.com/haoheliu/audioldm_eval

Second, generate test dataset by

python3 gen_test_file.py

Finally, perform a test run. A result for reference is attached here.

python3 test.py # Evaluate and save the json file to disk (example/paired.json)

Evaluation metrics

We have the following metrics in this toolbox:

The evaluation function will accept the paths of two folders as main parameters.

  1. If two folder have files with same name and same numbers of files, the evaluation will run in paired mode.
  2. If two folder have different numbers of files or files with different name, the evaluation will run in unpaired mode.

These metrics will only be calculated in paried mode: KL, KL_Sigmoid, PSNR, SSIM, LSD. In the unpaired mode, these metrics will return minus one.

Evaluation on AudioCaps and AudioSet

The AudioCaps test set consists of audio files with multiple text annotations. To evaluate the performance of AudioLDM, we randomly selected one annotation per audio file, which can be found in the accompanying json file.

Given the size of the AudioSet evaluation set with approximately 20,000 audio files, it may be impractical for audio generative models to perform evaluation on the entire set. As a result, we randomly selected 2,000 audio files for evaluation, with the corresponding annotations available in a json file.

For more information on our evaluation process, please refer to our paper.

Example

Single-GPU mode:

import torch
from audioldm_eval import EvaluationHelper

# GPU acceleration is preferred
device = torch.device(f"cuda:{0}")

generation_result_path = "example/paired"
target_audio_path = "example/reference"

# Initialize a helper instance
evaluator = EvaluationHelper(16000, device)

# Perform evaluation, result will be print out and saved as json
metrics = evaluator.main(
    generation_result_path,
    target_audio_path,
    backbone="cnn14", # `cnn14` refers to PANNs model, `mert` refers to MERT model
    limit_num=None # If you only intend to evaluate X (int) pairs of data, set limit_num=X
)

Multi-GPU mode:

import torch
from audioldm_eval import EvaluationHelperParallel
import torch.multiprocessing as mp

generation_result_path = "example/paired"
target_audio_path = "example/reference"

if __name__ == '__main__':    
    evaluator = EvaluationHelperParallel(16000, 2) # 2 denotes number of GPUs
    metrics = evaluator.main(
        generation_result_path,
        target_audio_path,
        backbone="cnn14", # `cnn14` refers to PANNs model, `mert` refers to MERT model
        limit_num=None # If you only intend to evaluate X (int) pairs of data, set limit_num=X
    )

You can use CUDA_VISIBLE_DEVICES to specify the GPU/GPUs to use.

CUDA_VISIBLE_DEVICES=0,1 python3 test.py

Note

TODO

Cite this repo

If you found this tool useful, please consider citing

@article{audioldm2-2024taslp,
  author={Liu, Haohe and Yuan, Yi and Liu, Xubo and Mei, Xinhao and Kong, Qiuqiang and Tian, Qiao and Wang, Yuping and Wang, Wenwu and Wang, Yuxuan and Plumbley, Mark D.},
  journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, 
  title={AudioLDM 2: Learning Holistic Audio Generation With Self-Supervised Pretraining}, 
  year={2024},
  volume={32},
  pages={2871-2883},
  doi={10.1109/TASLP.2024.3399607}
}

@article{liu2023audioldm,
  title={{AudioLDM}: Text-to-Audio Generation with Latent Diffusion Models},
  author={Liu, Haohe and Chen, Zehua and Yuan, Yi and Mei, Xinhao and Liu, Xubo and Mandic, Danilo and Wang, Wenwu and Plumbley, Mark D},
  journal={Proceedings of the International Conference on Machine Learning},
  year={2023}
  pages={21450-21474}
}

Reference

https://github.com/toshas/torch-fidelity

https://github.com/v-iashin/SpecVQGAN