Home

Awesome

NeRV: Neural Representations for Videos (NeurIPS 2021)

Project Page | Paper | UVG Data

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim], Abhinav Shrivastava<br> This is the official implementation of the paper "NeRV: Neural Representations for Videos ".

🔥 A better codebase is released based on HNeRV.

Method overview

<img src="https://i.imgur.com/OTdHe6r.png" width="560" />

Get started

We run with Python 3.8, you can set up a conda environment with all dependencies like so:

pip install -r requirements.txt 

High-Level structure

The code is organized as follows:

Reproducing experiments

Training experiments

The NeRV-S experiment on 'big buck bunny' can be reproduced with, NeRV-M and NeRV-L with 9_16_58 and 9_16_112 for fc_hw_dim respectively.

python train_nerv.py -e 300   --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none --act swish 

Evaluation experiments

To evaluate pre-trained model, just add --eval_Only and specify model path with --weight, you can specify model quantization with --quant_bit [bit_lenght], yuo can test decoding speed with --eval_fps, below we preovide sample commends for NeRV-S on bunny dataset

python train_nerv.py -e 300   --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none  --act swish \
    --weight checkpoints/nerv_S.pth --eval_only 

Decoding: Dump predictions with pre-trained model

To dump predictions with pre-trained model, just add --dump_images besides --eval_Only and specify model path with --weight

python train_nerv.py -e 300   --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none  --act swish \
   --weight checkpoints/nerv_S.pth --eval_only  --dump_images

Model Pruning

Evaluate the pruned model

Prune a pre-trained model and fine-tune to recover its performance, with --prune_ratio to specify model parameter amount to be pruned, --weight to specify the pre-trained model, --not_resume_epoch to skip loading the pre-trained weights epoch to restart fine-tune

python train_nerv.py -e 100   --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf prune_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0. --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none --suffix 107  --act swish \
    --weight checkpoints/nerv_S.pth --not_resume_epoch --prune_ratio 0.4 

Evaluate the pruned model

To evaluate pruned model, using --weight to specify the pruned model weight, --prune_ratio to initialize the weight_mask for checkpoint loading, eval_only for evaluation mode, --quant_bit to specify quantization bit length, --quant_axis to specify quantization axis

python train_nerv.py -e 100   --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf dbg --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0. --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none --suffix 107  --act swish \
    --weight checkpoints/nerv_S_pruned.pth --prune_ratio 0.4  --eval_only --quant_bit 8 --quant_axis 0

Distrotion-Compression result

The final bits-per-pixel (bpp) is computed by $$ModelParameter * (1 - ModelSparsity) * QuantBit / PixelNum$$.

Citation

If you find our work useful in your research, please cite:

@InProceedings{chen2021nerv,
      title={Ne{RV}: Neural Representations for Videos}, 
      author={Hao Chen and Bo He and Hanyu Wang and Yixuan Ren and Ser-Nam Lim and Abhinav Shrivastava},
      year={2021},
    booktitle={NeurIPS},
}

Contact

If you have any questions, please feel free to email the author at haochen.umd@gmail.com.