Home

Awesome

LCCGAN

Pytorch implementation for “Adversarial Learning with Local Coordinate Coding”.

<!-- ## Demonstration of Local Coordinate Coding (LCC) <img src="./images/local_g.png" width="600px" /> -->

Architecture of LCCGAN

<div align=center> <img src="./images/architecture.png" width="800px" /> </div>

Gometric Views of LCC Sampling

<div align=center> <img src="./images/lcc_sampling.jpg" width="600px" /> </div> <!-- ## Objective Function <img src="./images/objective.png" width="500px" /> -->

Training Algorithm

<img src="./images/algorithm.png" width="450px" />

Dependencies

python 2.7

Pytorch

Dataset

In our paper, to sample different images, we train our model on four datasets, respectively.

Training

python trainer.py --dataset flowers --dataroot your_images_folder --batchSize 64 --imageSize 64 --cuda
python trainer.py --dataset name_o_dataset --dataroot path_of_dataset

Citation

@InProceedings{pmlr-v80-cao18a,
  title = 	 {Adversarial Learning with Local Coordinate Coding},
  author = 	 {Cao, Jiezhang and Guo, Yong and Wu, Qingyao and Shen, Chunhua and Huang, Junzhou and Tan, Mingkui},
  booktitle = 	 {Proceedings of the 35th International Conference on Machine Learning},
  pages = 	 {707--715},
  year = 	 {2018},
  editor = 	 {Dy, Jennifer and Krause, Andreas},
  volume = 	 {80},
  series = 	 {Proceedings of Machine Learning Research},
  address = 	 {Stockholmsmässan, Stockholm Sweden},
  month = 	 {10--15 Jul},
  publisher = 	 {PMLR}
}