Awesome
ST-3DNet
Deep Spatial–Temporal 3D Convolutional Neural Networks for Traffic Data Forecasting
<img src="ST3DNet.png" alt="image-20210701111014324" style="zoom:50%;" />Reference
@ARTICLE{8684259,
author={Guo, Shengnan and Lin, Youfang and Li, Shijie and Chen, Zhaoming and Wan, Huaiyu},
journal={IEEE Transactions on Intelligent Transportation Systems},
title={Deep Spatial–Temporal 3D Convolutional Neural Networks for Traffic Data Forecasting},
year={2019},
volume={20},
number={10},
pages={3913-3926},
doi={10.1109/TITS.2019.2906365}}
Datasets
Step 1: Download the datasets provided by the paper 'Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction' (https://ojs.aaai.org/index.php/AAAI/article/view/10735)
Step 2: process dataset
python prepareDataNY.py
python prepareDataBJ.py
Train and Test
python trainNY.py
python trainBJ.py