Home

Awesome

CI PyPI version

Faster Whisper transcription with CTranslate2

faster-whisper is a reimplementation of OpenAI's Whisper model using CTranslate2, which is a fast inference engine for Transformer models.

This implementation is up to 4 times faster than openai/whisper for the same accuracy while using less memory. The efficiency can be further improved with 8-bit quantization on both CPU and GPU.

Benchmark

Whisper

For reference, here's the time and memory usage that are required to transcribe 13 minutes of audio using different implementations:

Large-v2 model on GPU

ImplementationPrecisionBeam sizeTimeMax. GPU memoryMax. CPU memory
openai/whisperfp1654m30s11325MB9439MB
faster-whisperfp16554s4755MB3244MB
faster-whisperint8559s3091MB3117MB

Executed with CUDA 11.7.1 on a NVIDIA Tesla V100S.

Small model on CPU

ImplementationPrecisionBeam sizeTimeMax. memory
openai/whisperfp32510m31s3101MB
whisper.cppfp32517m42s1581MB
whisper.cppfp16512m39s873MB
faster-whisperfp3252m44s1675MB
faster-whisperint852m04s995MB

Executed with 8 threads on a Intel(R) Xeon(R) Gold 6226R.

Distil-whisper

ImplementationPrecisionBeam sizeTimeGigaspeech WER
distil-whisper/distil-large-v2fp164-10.36
faster-distil-large-v2fp165-10.28
distil-whisper/distil-medium.enfp164-11.21
faster-distil-medium.enfp165-11.21

Executed with CUDA 11.4 on a NVIDIA 3090.

<details> <summary>testing details (click to expand)</summary>

For distil-whisper/distil-large-v2, the WER is tested with code sample from link. for faster-distil-whisper, the WER is tested with setting:

from faster_whisper import WhisperModel

model_size = "distil-large-v2"
# model_size = "distil-medium.en"
# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en")
</details>

Requirements

GPU

GPU execution requires the following NVIDIA libraries to be installed:

Note: The latest versions of ctranslate2 only support CUDA 12 and cuDNN 9. For CUDA 11 and cuDNN 8, the current workaround is downgrading to the 3.24.0 version of ctranslate2, for CUDA 12 and cuDNN 8, downgrade to the 4.4.0 version of ctranslate2, (This can be done with pip install --force-reinstall ctranslate2==4.4.0 or specifying the version in a requirements.txt).

There are multiple ways to install the NVIDIA libraries mentioned above. The recommended way is described in the official NVIDIA documentation, but we also suggest other installation methods below.

<details> <summary>Other installation methods (click to expand)</summary>

Note: For all these methods below, keep in mind the above note regarding CUDA versions. Depending on your setup, you may need to install the CUDA 11 versions of libraries that correspond to the CUDA 12 libraries listed in the instructions below.

Use Docker

The libraries (cuBLAS, cuDNN) are installed in this official NVIDIA CUDA Docker images: nvidia/cuda:12.3.2-cudnn9-runtime-ubuntu22.04.

Install with pip (Linux only)

On Linux these libraries can be installed with pip. Note that LD_LIBRARY_PATH must be set before launching Python.

pip install nvidia-cublas-cu12 nvidia-cudnn-cu12==9.*

export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`

Download the libraries from Purfview's repository (Windows & Linux)

Purfview's whisper-standalone-win provides the required NVIDIA libraries for Windows & Linux in a single archive. Decompress the archive and place the libraries in a directory included in the PATH.

</details>

Installation

The module can be installed from PyPI:

pip install faster-whisper
<details> <summary>Other installation methods (click to expand)</summary>

Install the master branch

pip install --force-reinstall "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/refs/heads/master.tar.gz"

Install a specific commit

pip install --force-reinstall "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
</details>

Usage

Faster-whisper

from faster_whisper import WhisperModel

model_size = "large-v3"

# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")

# or run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
# model = WhisperModel(model_size, device="cpu", compute_type="int8")

segments, info = model.transcribe("audio.mp3", beam_size=5)

print("Detected language '%s' with probability %f" % (info.language, info.language_probability))

for segment in segments:
    print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

Warning: segments is a generator so the transcription only starts when you iterate over it. The transcription can be run to completion by gathering the segments in a list or a for loop:

segments, _ = model.transcribe("audio.mp3")
segments = list(segments)  # The transcription will actually run here.

Batched Transcription

The following code snippet illustrates how to run batched transcription on an example audio file. BatchedInferencePipeline.transcribe is a drop-in replacement for WhisperModel.transcribe

from faster_whisper import WhisperModel, BatchedInferencePipeline

model = WhisperModel("turbo", device="cuda", compute_type="float16")
batched_model = BatchedInferencePipeline(model=model)
segments, info = batched_model.transcribe("audio.mp3", batch_size=16)

for segment in segments:
    print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

Faster Distil-Whisper

The Distil-Whisper checkpoints are compatible with the Faster-Whisper package. In particular, the latest distil-large-v3 checkpoint is intrinsically designed to work with the Faster-Whisper transcription algorithm. The following code snippet demonstrates how to run inference with distil-large-v3 on a specified audio file:

from faster_whisper import WhisperModel

model_size = "distil-large-v3"

model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en", condition_on_previous_text=False)

for segment in segments:
    print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

For more information about the distil-large-v3 model, refer to the original model card.

Word-level timestamps

segments, _ = model.transcribe("audio.mp3", word_timestamps=True)

for segment in segments:
    for word in segment.words:
        print("[%.2fs -> %.2fs] %s" % (word.start, word.end, word.word))

VAD filter

The library integrates the Silero VAD model to filter out parts of the audio without speech:

segments, _ = model.transcribe("audio.mp3", vad_filter=True)

The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the source code. They can be customized with the dictionary argument vad_parameters:

segments, _ = model.transcribe(
    "audio.mp3",
    vad_filter=True,
    vad_parameters=dict(min_silence_duration_ms=500),
)

Vad filter is enabled by default for batched transcription.

Logging

The library logging level can be configured like this:

import logging

logging.basicConfig()
logging.getLogger("faster_whisper").setLevel(logging.DEBUG)

Going further

See more model and transcription options in the WhisperModel class implementation.

Community integrations

Here is a non exhaustive list of open-source projects using faster-whisper. Feel free to add your project to the list!

Model conversion

When loading a model from its size such as WhisperModel("large-v3"), the corresponding CTranslate2 model is automatically downloaded from the Hugging Face Hub.

We also provide a script to convert any Whisper models compatible with the Transformers library. They could be the original OpenAI models or user fine-tuned models.

For example the command below converts the original "large-v3" Whisper model and saves the weights in FP16:

pip install transformers[torch]>=4.23

ct2-transformers-converter --model openai/whisper-large-v3 --output_dir whisper-large-v3-ct2
--copy_files tokenizer.json preprocessor_config.json --quantization float16

Models can also be converted from the code. See the conversion API.

Load a converted model

  1. Directly load the model from a local directory:
model = faster_whisper.WhisperModel("whisper-large-v3-ct2")
  1. Upload your model to the Hugging Face Hub and load it from its name:
model = faster_whisper.WhisperModel("username/whisper-large-v3-ct2")

Comparing performance against other implementations

If you are comparing the performance against other Whisper implementations, you should make sure to run the comparison with similar settings. In particular:

OMP_NUM_THREADS=4 python3 my_script.py