Home

Awesome

Note: Version compatible with latest GTSAM is being maintained at borglab/gpmp2.

GPMP2

This library is an implementation of GPMP2 (Gaussian Process Motion Planner 2) algorithm described in Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs (RSS 2016). The core library is developed in C++ language with an optional Python 2.7 toolbox. GPMP2 was started at the Georgia Tech Robot Learning Lab, see THANKS for contributors.

Prerequisites

Installation (C++ only)

Installation (C++ with Python toolbox)

Citing

If you use GPMP2 in an academic context, please cite following publications:

@inproceedings{Mukadam-IJRR-18,
  Author = {Mustafa Mukadam and Jing Dong and Xinyan Yan and Frank Dellaert and Byron Boots},
  Title = {Continuous-time {G}aussian Process Motion Planning via Probabilistic Inference},
  journal = {The International Journal of Robotics Research (IJRR)},
  volume = {37},
  number = {11},
  pages = {1319--1340},
  year = {2018}
}

@inproceedings{Dong-RSS-16,
  Author = {Jing Dong and Mustafa Mukadam and Frank Dellaert and Byron Boots},
  Title = {Motion Planning as Probabilistic Inference using {G}aussian Processes and Factor Graphs},
  booktitle = {Proceedings of Robotics: Science and Systems (RSS)},
  year = {2016}
}

@inproceedings{dong2018sparse,
  title={Sparse {G}aussian Processes on Matrix {L}ie Groups: A Unified Framework for Optimizing Continuous-Time Trajectories},
  author={Dong, Jing and Mukadam, Mustafa and Boots, Byron and Dellaert, Frank},
  booktitle={2018 IEEE International Conference on Robotics and Automation (ICRA)},
  pages={6497--6504},
  year={2018},
  organization={IEEE}
}

License

GPMP2 is released under the BSD license, reproduced in LICENSE.