Awesome
Semiempirical Extended Tight-Binding Program Package
This is the offical repository of the xtb
program package developed by the Grimme group in Bonn.
Installation
Statically linked binaries (Intel Compiler) can be found at the latest release page, a version for Linux (Intel 18.0.2, GLIBC 2.19) and Windows (Intel 2022) is provided.
The xtb
program and library are packaged on conda-forge for Linux (x86_64, aarch64, ppc64le) and MacOS (x86_64, arm64).
For homebrew users a custom tap is available at grimme-lab/homebrew-qc providing prebuilt MacOS/x86_64 binaries, for MacOS/arm64 binaries will be compiled on installation automatically.
Bleeding edge releases (Linux only) of the latest source from this repository are available on the continuous release tag.
This projects supports two build systems, meson and CMake. A short guide on the usage of each is given here, follow the linked instructions for a more detailed information (meson guide, CMake guide).
Compilers:
- ifort(<=2021.10.0), icc(<=2021.10.0)
- gfortran, gcc
Meson
Using meson as build system requires you to install a fairly new version like 0.62 or newer. To use the default backend of meson you have to install ninja version 1.7 or newer.
export FC=ifort CC=icc
meson setup build --buildtype release --optimization 2 -Dfortran_link_args="-qopenmp"
ninja -C build test
<details> <summary><b>Setting up meson on macOS</b></summary>[!IMPORTANT] Compilation with
meson
on macOS differs slightly from the protocol for Linux-based systems. Different BLAS libraries can lead to deviating results in rare cases – please stick to the following instructions.
Compiling with meson on macOS
- Use Homebrew for Package Management: Install dependencies like
gcc
,gfortran
, andopenblas
using Homebrew. Further information on how to setupbrew
. Example:brew install gcc gfortran openblas
- meson setup call with appropriate environment variables: Use the following adapted
meson setup
call to compilextb
on macOS. Obviously, the paths to the libraries might differ on your system.LDFLAGS="-L/opt/homebrew/opt/openblas/lib" CPPFLAGS="-I/opt/homebrew/opt/openblas/include" FC=gfortran-14 CC=gcc-14 meson setup _build --buildtype release -Dlapack=openblas
Make sure the testsuite is running without errors.
To install the xtb
binaries to /usr/local
use (might require sudo
)
ninja -C build install
For more information on the build with meson see the instructions here.
CMake
The CMake build system requires both make and CMake to be installed, the latter has to be version 3.9 or newer.
Building xtb
with CMake works with the following chain of commands:
cmake -B build -DCMAKE_BUILD_TYPE=Release
make -C build
make -C build test
To install the xtb
binaries to /usr/local
use (might require sudo
)
make -C build install
For more detailed information on the build with CMake see the instructions here.
Conda
Installing xtb
from the conda-forge
channel can be achieved by adding conda-forge
to your channels with:
conda config --add channels conda-forge
Once the conda-forge
channel has been enabled, xtb
can be installed with:
conda install xtb
It is possible to list all of the versions of xtb
available on your platform with:
conda search xtb --channel conda-forge
Documentation
The xtb
documentation is hosted at read-the-docs.
Contributing
Please read our contributing guidelines before contributing to this project.
Contributors
We are developing this program to make our research possible.
Many of the features that xtb
has today have been added because there
was a dire need for them and we had many contributors who made these
features reality:
- P. Atkinson (@patrickatkinson)
- C. Bannwarth (@cbannwarth)
- F. Bohle (@fabothch)
- G. Brandenburg (@gbrandenburg)
- E. Caldeweyher (@f3rmion)
- M. Checinski
- S. Dohm (@thch-dohm)
- S. Ehlert (@awvwgk)
- S. Ehrlich
- I. Gerasimov (@foxtran)
- S. Grimme (@stefangrimme)
- C. Hölzer (@hoelzerC)
- A. Katbashev (@Albkat)
- J. Koopman (@JayTheDog)
- C. Lavinge (@clavigne)
- S. Lehtola (@susilehtola)
- F. März
- M. Müller (@marcelmbn)
- F. Musil (@felixmusil)
- H. Neugebauer (@haneug)
- J. Pisarek
- C. Plett (@cplett)
- P. Pracht (@pprcht)
- F. Pultar (@pultar)
- J. Seibert (@liljay42)
- P. Shushkov
- S. Spicher (@sespic)
- M. Stahn (@MtoLStoN)
- M. Steiner (@steinmig)
- T. Strunk (@timostrunk)
- J. Stückrath (@jbstueckrath)
- T. Rose (@Thomas3R)
- J. Unsleber (@nabbelbabbel)
Contributors are listed in alphabetical order. Some contributions predate the GitHub release of this project and are not visible in the repository commit history. For the contributor data from the commit history since then look here.
Citations
General Reference to xtb
and the implemented GFN methods:
- C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme WIREs Comput. Mol. Sci., 2020, 11, e01493. DOI: 10.1002/wcms.1493
for GFN-xTB:
- S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput., 2017, 13, 1989-2009. DOI: 10.1021/acs.jctc.7b00118
- C. Bannwarth, S. Ehlert and S. Grimme., J. Chem. Theory Comput., 2019, 15, 1652-1671. DOI: 10.1021/acs.jctc.8b01176
- P. Pracht, E. Caldeweyher, S. Ehlert, S. Grimme, ChemRxiv, 2019, preprint. DOI: 10.26434/chemrxiv.8326202.v1
for GFN-FF:
- S. Spicher and S. Grimme, Angew. Chem. Int. Ed., 2020, 59, 15665–15673 DOI: 10.1002/anie.202004239
for PTB:
- S. Grimme, M. Müller, A. Hansen, J. Chem. Phys. 2023, 158, 124111. DOI: 10.1063/5.0137838
for GBSA and ALPB implicit solvation:
- S. Ehlert, M. Stahn, S. Spicher, S. Grimme, J. Chem. Theory Comput., 2021, 17, 4250-4261 DOI: 10.1021/acs.jctc.1c00471
for ddCOSMO and CPCM-X implicit solvation:
- M.Stahn, S. Ehlert, S. Grimme, J. Phys. Chem. A, 2023, XX, XXX-XXX DOI: 10.1021/acs.jpca.3c04382
for DFT-D4:
- E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112. DOI: 10.1063/1.4993215
- E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122. DOI: 10.1063/1.5090222
- E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys., 2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A
for sTDA-xTB:
- S. Grimme and C. Bannwarth, J. Chem. Phys., 2016, 145, 054103. DOI: 10.1063/1.4959605
in the mass-spec context:
- V. Asgeirsson, C. Bauer and S. Grimme, Chem. Sci., 2017, 8, 4879. DOI: 10.1039/c7sc00601b
- J. Koopman and S. Grimme, ACS Omega, 2019, 4, 12, 15120-15133. DOI: 10.1021/acsomega.9b02011
- J. Koopman and S. Grimme, J. Am. Soc. Mass Spectrom., 2021, 32, 7, 1735-1751. DOI: 10.1021/jasms.1c00098
for metadynamics refer to:
- S. Grimme, J. Chem. Theory Comput., 2019, 155, 2847-2862. DOI: 10.1021/acs.jctc.9b00143
for SPH calculations refer to:
- S. Spicher and S. Grimme, J. Chem. Theory Comput., 2021, 17, 1701–1714. DOI: 10.1021/acs.jctc.0c01306
for ONIOM refer to:
- C. Plett, A. Katbashev, S. Ehlert, S. Grimme, M. Bursch, Phys. Chem. Chem. Phys., 2023, 25, 17860-17868. DOI: 10.1039/D3CP02178E
All references are available in bibtex format.
License
xtb
is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
xtb
is distributed in the hope that it will be useful,
but without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose. See the
GNU Lesser General Public License for more details.
Unless you explicitly state otherwise, any contribution intentionally
submitted for inclusion in xtb
by you, as defined in the
GNU Lesser General Public license, shall be licensed as above, without any
additional terms or conditions.