Awesome
Dual-Det : A Fast Detector for Oriented Object Detection in Aerial Images
The code is useful for DOTA, HRSC2016 and UCAS-AOD
How to get dataset?
- Dota: Dota is a large-scale dataset for object detection in aerial images. It can be used to develop and evaluate object detectors in aerial images. You can get the dataset via their home page.
- HRSC2016
- UCAS-AOD
Installation
- Create a new conda environment and install pytorch v1.0+ and torchvision
- Clone code
git clone https://github.com/gqy4166000/DASR.git
- Install the requirements
pip install -r requirements.txt
- Compile polyiou
cd src
sudo apt-get install swig
swig -c++ -python polyiou.i
python setup.py build_ext --inplace
cd ..
- Compile deformable convolutional
cd src/lib/models/networks/DCNv2
./make.sh
Usage
Download the dataset and copy the partitioned data to the \data folder in the following format. For DOTA, images and labels need to be splited for use(by ImgSplit.py or ImgSplit_multi_process.py).
.
├── src
└── data
├── Dota1.0*
├── train_sp*
├──images
└──labelTxt
└── val_sp*
├──images
└──labelTxt
*mean that you can change the folder name and the path name in the DOTA file must also be changed.
- Train
python main.py --dataset dota --exp_id dota_train --gpus 0,1 --batch_size 32
- Val
python main.py --dataset dota --exp_id dota_val --gpus 0 --test
You can adjust learning parameters in opt.py, and select single Angle, double Angle, and other branches in cfg.py.