Home

Awesome

Separable Self and Mixed Attention Transformers for Efficient Object Tracking [WACV2024]

Official implementation

SMAT_block

News

09-04-2024: C++ implementation of SMAT is available here

07-09-2023: The paper is available on arXiv now

28-08-2023: The pretrained tracker model is released

17-08-2023: The SMAT tracker training and inference code is released

14-08-2023: The paper is accepted at WACV2024

Installation

Install the dependency packages using the environment file smat_pyenv.yml.

Generate the relevant files:

python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output

After running this command, modify the datasets paths by editing these files

lib/train/admin/local.py  # paths about training
lib/test/evaluation/local.py  # paths about testing

Training

python tracking/train.py --script mobilevitv2_track --config mobilevitv2_256_128x1_ep300 --save_dir ./output --mode single

Pretrained tracker model

The pretrained tracker model can be found here

Tracker Evaluation

python tracking/test.py --tracker_name mobilevitv2_track --tracker_param mobilevitv2_256_128x1_ep300 --dataset got10k_test or trackingnet or lasot

Tracker demo

To evaluate the tracker on a sample video, run

python tracking/video_demo.py --tracker_name mobilevitv2_track --tracker_param mobilevitv2_256_128x1_ep300 --videofile *path-to-video-file* --optional_box *bounding-box-annotation*

Visualization of tracker output and the attention maps

attn_maps

Acknowledgements

Citation

If our work is useful for your research, please consider citing:

@inproceedings{gopal2024separable,
  title={Separable self and mixed attention transformers for efficient object tracking},
  author={Gopal, Goutam Yelluru and Amer, Maria A},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={6708--6717},
  year={2024}
}