Home

Awesome

Learning to Generate Soft-Labels from Noisy Labels

Official code for paper MetaLabelNet: Learning to Generate Soft-Labels from Noisy-Labels.

Illustration of the proposed MetaLabelNet algorithm

Requirements:

Running Proposed Algorithm

Code can be run as follows:

python main.py -d dataset_name -n noise_type -r noise_ratio -s batch_size -a alpha -b beta -s1 stage1 -s2 stage2 -m meta_data_num -u unlabeled_data_num -v verbose

where options for input arguments are as follows

Any of the input parameters can be skipped to use the default value. For example, to run with default values for all parameters:

python main.py -d clothing1M

Running Baseline Methods

Baseline methods can be run as follows:

python baselines.py -d dataset_name -n noise_type -r noise_ratio -m model_name 

where baseline model can be one of the followings: