Awesome
Gemma in PyTorch
Gemma is a family of lightweight, state-of-the art open models built from research and technology used to create Google Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. For more details, please check out the following links:
This is the official PyTorch implementation of Gemma models. We provide model and inference implementations using both PyTorch and PyTorch/XLA, and support running inference on CPU, GPU and TPU.
Updates
-
[June 26th 🔥] Support Gemma v2. You can find the checkpoints on Kaggle and Hugging Face
-
[April 9th] Support CodeGemma. You can find the checkpoints on Kaggle and Hugging Face
-
[April 5] Support Gemma v1.1. You can find the v1.1 checkpoints on Kaggle and Hugging Face.
Download Gemma model checkpoint
You can find the model checkpoints on Kaggle here.
Alternatively, you can find the model checkpoints on the Hugging Face Hub here. To download the models, go the the model repository of the model of interest and click the Files and versions
tab, and download the model and tokenizer files. For programmatic downloading, if you have huggingface_hub
installed, you can also run:
huggingface-cli download google/gemma-7b-it-pytorch
Note that you can choose between the 2B, 2B V2, 7B, 7B int8 quantized, 9B, and 27B variants.
VARIANT=<2b or 7b or 9b or 27b>
CKPT_PATH=<Insert ckpt path here>
Try it free on Colab
Follow the steps at https://ai.google.dev/gemma/docs/pytorch_gemma.
Try it out with PyTorch
Prerequisite: make sure you have setup docker permission properly as a non-root user.
sudo usermod -aG docker $USER
newgrp docker
Build the docker image.
DOCKER_URI=gemma:${USER}
docker build -f docker/Dockerfile ./ -t ${DOCKER_URI}
Run Gemma inference on CPU.
PROMPT="The meaning of life is"
docker run -t --rm \
-v ${CKPT_PATH}:/tmp/ckpt \
${DOCKER_URI} \
python scripts/run.py \
--ckpt=/tmp/ckpt \
--variant="${VARIANT}" \
--prompt="${PROMPT}"
# add `--quant` for the int8 quantized model.
Run Gemma inference on GPU.
PROMPT="The meaning of life is"
docker run -t --rm \
--gpus all \
-v ${CKPT_PATH}:/tmp/ckpt \
${DOCKER_URI} \
python scripts/run.py \
--device=cuda \
--ckpt=/tmp/ckpt \
--variant="${VARIANT}" \
--prompt="${PROMPT}"
# add `--quant` for the int8 quantized model.
Try It out with PyTorch/XLA
Build the docker image (CPU, TPU).
DOCKER_URI=gemma_xla:${USER}
docker build -f docker/xla.Dockerfile ./ -t ${DOCKER_URI}
Build the docker image (GPU).
DOCKER_URI=gemma_xla_gpu:${USER}
docker build -f docker/xla_gpu.Dockerfile ./ -t ${DOCKER_URI}
Run Gemma inference on CPU.
docker run -t --rm \
--shm-size 4gb \
-e PJRT_DEVICE=CPU \
-v ${CKPT_PATH}:/tmp/ckpt \
${DOCKER_URI} \
python scripts/run_xla.py \
--ckpt=/tmp/ckpt \
--variant="${VARIANT}" \
# add `--quant` for the int8 quantized model.
Run Gemma inference on TPU.
Note: be sure to use the docker container built from xla.Dockerfile
.
docker run -t --rm \
--shm-size 4gb \
-e PJRT_DEVICE=TPU \
-v ${CKPT_PATH}:/tmp/ckpt \
${DOCKER_URI} \
python scripts/run_xla.py \
--ckpt=/tmp/ckpt \
--variant="${VARIANT}" \
# add `--quant` for the int8 quantized model.
Run Gemma inference on GPU.
Note: be sure to use the docker container built from xla_gpu.Dockerfile
.
docker run -t --rm --privileged \
--shm-size=16g --net=host --gpus all \
-e USE_CUDA=1 \
-e PJRT_DEVICE=CUDA \
-v ${CKPT_PATH}:/tmp/ckpt \
${DOCKER_URI} \
python scripts/run_xla.py \
--ckpt=/tmp/ckpt \
--variant="${VARIANT}" \
# add `--quant` for the int8 quantized model.
Tokenizer Notes
99 unused tokens are reserved in the pretrained tokenizer model to assist with more efficient training/fine-tuning. Unused tokens are in the string format of <unused[0-98]>
with token id range of [7-105]
.
"<unused0>": 7,
"<unused1>": 8,
"<unused2>": 9,
...
"<unused98>": 105,
Disclaimer
This is not an officially supported Google product.