Awesome
data2text-transformer
Code for Enhanced Transformer Model for Data-to-Text Generation [PDF] (Gong, Crego, Senellart; WNGT2019). Much of this code is adapted from an earlier fork of XLM.
EMNLP-WNGT2019 Evaluation Results (SYSTRAN-AI & SYSTRAN-AI-detok)
Dataset and Preprocessing
The boxscore-data json files can be downloaded from the boxscore-data repo.
Assuming the RotoWire json files reside at ./rotowire
, the following commands will preprocess the data
Step1: Data extraction
python scripts/data_extract.py -d rotowire/train.json -o rotowire/train
In this step, we:
- Convert the tables into a sequence of records:
train.gtable
- Extract the summary and transform entity tokens (e.g., Kobe Bryant -> Kobe_Bryant):
train.summary
- Mark the occurrances of records in the summary:
train.gtable_label
andtrain.summary_label
Step2: Extract vocabulary
python scripts/extract_vocab.py -t rotowire/train.gtable -s rotowire/train.summary
It will generate vocabulary files for each of them:
rotowire/train.gtable_vocab
rotowire/train.summary_vocab
Step3: Binarize the data
python model/preprocess_summary_data.py --summary rotowire/train.summary \
--summary_vocab rotowire/train.summary_vocab \
--summary_label rotowire/train.summary_label
python model/preprocess_table_data.py --table rotowire/train.gtable \
--table_label rotowire/train.gtable_label \
--table_vocab rotowire/train.gtable_vocab
And we finally get the training data:
- Input record sequences:
train.gtable.pth
- Output summaries:
train.summary.pth
Model Training
MODELPATH=$PWD/model
export PYTHONPATH=$MODELPATH:$PYTHONPATH
python $MODELPATH/train.py
## main parameters
--model_path "experiments"
--exp_name "baseline"
--exp_id "try1"
## data location / training objective
--train_cs_table_path rotowire/train.gtable.pth # record data for content selection (CS) training
--train_sm_table_path rotowire/train.gtable.pth # record data for data2text summarization (SM) training
--train_sm_summary_path rotowire/train.summary.pth # summary data for data2text summarization (SM) training
--valid_table_path rotowire/valid.gtable.pth # input record data for validation
--valid_summary_path rotowire/valid.summary.pth # output summary data for validation
--cs_step True # enable content selection training objective
--lambda_cs "1" # CS training coefficient
--sm_step True # enable summarization objective
--lambda_sm "1" # SM training coefficient
## transformer parameters
--label_smoothing 0.05 # label smoothing
--share_inout_emb True # share the embedding and softmax weights in decoder
--emb_dim 512 # embedding size
--enc_n_layers 1 # number of encoder layers
--dec_n_layers 6 # number of decoder layers
--dropout 0.1 # dropout
## optimization
--save_periodic 1 # save model every N epoches
--batch_size 6 # batch size (number of examples)
--beam_size 4 # beam search in generation
--epoch_size 1000 # number of examples per epoch
--eval_bleu True # evaluate the BLEU score
--validation_metrics valid_mt_bleu # validation metrics
Generation
Use the following commands to generate from the above models:
Download the baseline model from: link
MODEL_PATH=experiments/baseline/try1/best-valid_mt_bleu.pth
INPUT_TABLE=rotowire/valid.gtable
OUTPUT_SUMMARY=rotowire/valid.gtable_out
python model/summarize.py
--model_path $MODEL_PATH
--table_path $INPUT_TABLE
--output_path $OUTPUT_SUMMARY
--beam_size 4
Postprocessing after generation
In the preprocessing step1 (data extraction), the entity tokens are transformed (e.g., Kobe Bryant -> Kobe_Bryant). Here we revert such transformation:
cat ${OUTPUT_SUMMARY} | sed 's/_/ /g' > ${OUTPUT_SUMMARY}_txt
Evaluation
Content-oriented evaluation
We use the code in https://github.com/ratishsp/data2text-1 for evaluation.
Metrics of RG, CS, CO are computed using the below commands.
Prepare dataset for the IE system
~/anaconda2/bin/python data_utils.py
-mode make_ie_data # mode
-input_path "../rotowire" # rotowire data path
-output_fi "roto-ie.h5" # output filename
Generate h5 file for output summary
~/anaconda2/bin/python data_utils.py
-mode prep_gen_data # mode
-gen_fi ${OUTPUT_SUMMARY}_txt # generated summary (postprocessed)
-dict_pfx "roto-ie" # dict prefix of IE system
-output_fi ${OUTPUT_SUMMARY}_txt.h5 # output h5 filename
-input_path ../rotowire # rotowire data path
Evaluate RG metrics
th extractor.lua
-gpuid 1
-datafile roto-ie.h5 # dataset of IE system
-preddata ${OUTPUT_SUMMARY}_txt.h5 # generated h5 file in the previous step
-dict_pfx roto-ie # dict prefix of IE system
-just_eval
Evaluate CS and CO metrics
~/anaconda2/bin/python non_rg_metrics.py roto-gold-val.h5-tuples.txt ${OUTPUT_SUMMARY}_txt.h5-tuples.txt
BLEU evaluation
The BLEU evaluation script can be obtained from Moses:
perl multi-bleu.perl ${reference_summary} < ${generated_summary}