Home

Awesome

learning-with-noisy-labels

Learning with Noisy Labels by adopting a peer prediction loss function.

Requirements

Example

Run the following command in the terminal to replicate our experiment on UCI Heart Dataset.

python runner.py heart --seeds 8 --test-size 0.15 --val-size 0.1 --dropout 0 --loss bce --activation relu --normalize --verbose --e0 0.1 --e1 0.3 --episodes 1000 --batchsize 64 --batchsize-peer 64 --hidsize 8 --lr 0.0007 --alpha 1

If you want to equalize the prior by pre-sampling, add this argument: '--equalize-prior'.

Details of the arguments: