Awesome
filter
- Dynamic query params filters for Goyave
Compatible with Goyave v5
only. If you want to use the library for v4, use v0.6.0
.
goyave.dev/filter
allows powerful filtering using query parameters. Inspired by nestjsx/crud.
Usage
go get goyave.dev/filter
First, add the necessary query validation to your index route:
router.GlobalMiddleware(&parse.Middleware{}) // Don't forget the parse middleware!
router.Get("/users", user.Index).ValidateQuery(filter.Validation)
Then, create a new method in your repository and service:
// database/repository/user.go
import "goyave.dev/filter"
//...
func (r *User) Paginate(ctx context.Context, request *filter.Request) (*database.Paginator[*model.User], error) {
users := []*model.User{}
paginator, err := filter.Scope(session.DB(ctx, r.DB), request, &users)
return paginator, errors.New(err)
}
// service/user/user.go
func (s *Service) Paginate(ctx context.Context, request *filter.Request) (*database.PaginatorDTO[*dto.User], error) {
paginator, err := s.repository.Paginate(ctx, request)
return typeutil.MustConvert[*database.PaginatorDTO[*dto.User]](paginator), errors.New(err)
}
From your controller, use filter.NewRequest()
with the request's query to generate the filter request DTO:
// http/controller/user/user.go
func (ctrl *Controller) Index(response *goyave.Response, request *goyave.Request) {
paginator, err := ctrl.userService.Paginate(request.Context(), filter.NewRequest(request.Query))
if response.WriteDBError(err) {
return
}
response.JSON(http.StatusOK, paginator)
}
And that's it! Now your front-end can add query parameters to filter as it wants.
You can also find records without paginating using ScopeUnpaginated()
:
var users []*model.User
tx := filter.ScopeUnpaginated(session.DB(ctx, r.DB), request, &users)
Note: ScopeUnpaginated()
returns a *gorm.DB
, not directly an error. To check for errors, use tx.Error
.
Settings
You can disable certain features, or blacklist certain fields using filter.Settings
:
settings := &filter.Settings[*model.User]{
DisableFields: true, // Prevent usage of "fields"
DisableFilter: true, // Prevent usage of "filter"
DisableSort: true, // Prevent usage of "sort"
DisableJoin: true, // Prevent usage of "join"
// If not nil and not empty, and if the request is not providing any
// sort, the request will be sorted according to the `*Sort` defined in this slice.
// If `DisableSort` is enabled, this has no effect.
DefaultSort: []*Sort{{Field: "name", Order: SortDescending}},
// If true, the sort will wrap the value in `LOWER()` if it's a string, resulting in `ORDER BY LOWER(column)`.
CaseInsensitiveSort: true,
FieldsSearch: []string{"a", "b"}, // Optional, the fields used for the search feature
SearchOperator: filter.Operators["$eq"], // Optional, operator used for the search feature, defaults to "$cont"
Blacklist: filter.Blacklist{
// Prevent selecting, sorting and filtering on these fields
FieldsBlacklist: []string{"a", "b"},
// Prevent joining these relations
RelationsBlacklist: []string{"Relation"},
Relations: map[string]*filter.Blacklist{
// Blacklist settings to apply to this relation
"Relation": &filter.Blacklist{
FieldsBlacklist: []string{"c", "d"},
RelationsBlacklist: []string{"Parent"},
Relations: map[string]*filter.Blacklist{ /*...*/ },
IsFinal: true, // Prevent joining any child relation if true
},
},
},
}
results := []*model.User{}
paginator, err := settings.Scope(session.DB(ctx, r.DB), request, &results)
Filter
?filter=field||$operator||value
Examples:
?filter=name||$cont||Jack (
WHERE name LIKE "%Jack%"
)
You can add multiple filters. In that case, it is interpreted as an AND
condition.
You can use OR
conditions using ?or
instead, or in combination:
?filter=name||$cont||Jack&or=name||$cont||John (
WHERE (name LIKE %Jack% OR name LIKE "%John%")
)
?filter=age||$eq||50&filter=name||$cont||Jack&or=name||$cont||John (WHERE ((age = 50 AND name LIKE "%Jack%") OR name LIKE "%John%")
)
You can filter using columns from one-to-one relations ("has one" or "belongs to"):
?filter=Relation.name||$cont||Jack
If there is only one "or", it is considered as a regular filter:
?or=name||$cont||John (
WHERE name LIKE "%John%"
)
If both "filter" and "or" are present, then they are interpreted as a combination of two AND
groups compared with each other using OR
:
?filter=age||$eq||50&filter=name||$cont||Jack&or=name||$cont||John&or=name||$cont||Doe
WHERE ((age = 50 AND name LIKE "%Jack%") OR (name LIKE "%John%" AND name LIKE "%Doe%"))
Note: All the filter conditions added to the SQL query are grouped (surrounded by parenthesis).
Operators
$eq | = , equals |
$ne | <> , not equals |
$gt | > , greater than |
$lt | < , lower than |
$gte | >= , greater than or equals |
$lte | <= , lower than or equals |
$starts | LIKE val% , starts with |
$ends | LIKE %val , ends with |
$cont | LIKE %val% , contains |
$excl | NOT LIKE %val% , not contains |
$in | IN (val1, val2,...) , in (accepts multiple values) |
$notin | NOT IN (val1, val2,...) , in (accepts multiple values) |
$isnull | IS NULL , is NULL (doesn't accept value) |
$notnull | IS NOT NULL , not NULL (doesn't accept value) |
$between | BETWEEN val1 AND val2 , between (accepts two values) |
Search
Search is similar to multiple or=column||$cont||value
, but the column and operator are specified by the server instead of the client.
Specify the column using Settings
:
settings := &filter.Settings{
FieldsSearch: []string{"a", "b"},
SearchOperator: filter.Operators["$eq"], // Optional, defaults to "$cont"
//...
}
?search=John (
WHERE (a LIKE "%John%" OR b LIKE "%John%")
)
If you don't specify FieldsSearch
, the query will search in all selectable fields.
Fields / Select
?fields=field1,field2
A comma-separated list of fields to select. If this field isn't provided, uses SELECT *
.
Sort
?sort=column,ASC|DESC
Examples:
?sort=name,ASC
?sort=age,DESC
You can also sort by multiple fields.
?sort=age,DESC&sort=name,ASC
Join
?join=relation
Preload a relation. You can also only select the columns you need:
?join=relation||field1,field2
You can join multiple relations:
?join=profile||firstName,email&join=notifications||content&join=tasks
Pagination
Internally, goyave.dev/filter
uses Goyave's Paginator
.
?page=1&per_page=10
- If
page
isn't given, the first page will be returned. - If
per_page
isn't given, the default page size will be used. This default value can be overridden by changingfilter.DefaultPageSize
. - Either way, the result is always paginated, even if those two parameters are missing.
Computed columns
Sometimes you need to work with a "virtual" column that is not stored in your database, but is computed using an SQL expression. A dynamic status depending on a date for example. In order to support the features of this library properly, you will have to add the expression to your model using the computed
struct tag:
type MyModel struct {
ID uint
// ...
StartDate time.Time
Status string `gorm:"->;-:migration" computed:"CASE WHEN ~~~ct~~~.start_date < NOW() THEN 'pending' ELSE 'started' END"`
}
Note: the ~~~ct~~~
is an indicator for the current table. It will be replaced by the correct table or relation name automatically. This allows the usage of computed fields in relations too, where joins are needed.
Tip: you can also use composition to avoid including the virtual column into your model:
type MyModel struct{
ID uint
// ...
StartDate time.Time
}
type MyModelWithStatus struct{
MyModel
Status string `gorm:"->;-:migration" computed:"CASE WHEN ~~~ct~~~.start_date < NOW() THEN 'pending' ELSE 'started' END"`
}
When using JSON columns, you can support filters on nested fields inside that JSON column using a computed column:
// This example is compatible with PostgreSQL.
// JSON processing may be different if you are using another database engine.
type MyModel struct {
ID uint
JSONColumn datatypes.JSON
SomeJSONField null.Int `gorm:"->;-:migration" computed:"(~~~ct~~~.json_column->>'fieldName')::int"`
}
It is important to make sure your JSON expression returns a value that has a type that matches the struct field to avoid DB errors. Database engines usually only return text types from JSON. If your field is a number, you'll have to cast it or you will get database errors when filtering on this field.
Security
- Inputs are escaped to prevent SQL injections.
- Fields are pre-processed and clients cannot request fields that don't exist. This prevents database errors. If a non-existing field is required, it is simply ignored. The same goes for sorts and joins. It is not possible to request a relation that doesn't exist.
- Type-safety: in the same field pre-processing, the broad type of the field is checked against the database type (based on the model definition). This prevents database errors if the input cannot be converted to the column's type.
- Foreign keys are always selected in joins to ensure associations can be assigned to parent model.
- Be careful with bidirectional relations (for example an article is written by a user, and a user can have many articles). If you enabled both your models to preload these relations, the client can request them with an infinite depth (
Articles.User.Articles.User...
). To prevent this, it is advised to use the relation blacklist or IsFinal on the deepest requestable models. See the settings section for more details.
Tips
Model and DTO recommendations
- Use
json:",omitempty"
on all DTO fields.- Note: using
omitempty
on slices will remove them from the json result if they are not nil and empty. There is currently no solution to this problem using the standard json package.
- Note: using
- Don't include the foreign keys in the DTO.
- Use
*null.Time
from thegopkg.in/guregu/null.v4
library instead ofsql.NullTime
. - Always specify
gorm:"foreignKey"
, otherwise falls back to "ID". - Don't use
gorm.Model
and add the necessary fields manually. You get better control over json struct tags this way. - Use pointers for nullable relations and nullable fields that implement
sql.Scanner
(such asnull.Time
).
Type-safety
For non-native types that don't implement the driver.Valuer
interface, you should always use the filterType
struct tag. This struct tag enforces the field's recognized broad type for the type-safety conversion. It is also recommended to always add this tag when working with arrays. This tag is effective for the filter and search features.
Available broad types are:
text
/text[]
enum
/enum[]
: use this with custom enum types to prevent "invalid input value" or "invalid operator" errorsbool
/bool[]
int8
/int8[]
,int16
/int16[]
,int32
/int32[]
,int64
/int64[]
uint
/uint[]
,uint16
/uint16[]
,uint32
/uint32[]
,uint64
/uint64[]
float32
/float32[]
,float64
/float64[]
time
/time[]
-
: unsupported data type. Fields tagged with-
will be ignored in filters and search: no condition will be added to theWHERE
clause.
If not provided, the type will be determined from GORM's data type. If GORM's data type is a custom type that is not directly supported by this library, the type will fall back to -
(unsupported) and the field will be ignored in the filters.
If the type is supported but the user input cannot be used with the requested column, the built-in operators will generate a FALSE
condition.
Example
type MyModel struct{
ID uint
// ...
StartDate null.Time `filterType:"time"`
}
Static conditions
If you want to add static conditions (not automatically defined by the library), it is advised to group them like so:
users := []*model.User{}
db = session.DB(ctx, r.DB).Where(r.DB.Where("username LIKE ?", "%Miss%").Or("username LIKE ?", "%Ms.%"))
paginator, err := filter.Scope(db, request, &users)
Custom operators
You can add custom operators (or override existing ones) by modifying the filter.Operators
map:
import (
"gorm.io/gorm"
"gorm.io/gorm/schema"
"goyave.dev/filter"
"goyave.dev/goyave/v5/util/sqlutil"
)
// ...
filter.Operators["$cont"] = &filter.Operator{
Function: func(tx *gorm.DB, f *filter.Filter, column string, dataType filter.DataType) *gorm.DB {
if dataType != filter.DataTypeString {
return f.Where("FALSE")
}
query := column + " LIKE ?"
value := "%" + sqlutil.EscapeLike(f.Args[0]) + "%"
return f.Where(tx, query, value)
},
RequiredArguments: 1,
}
filter.Operators["$eq"] = &filter.Operator{
Function: func(tx *gorm.DB, f *filter.Filter, column string, dataType filter.DataType) *gorm.DB {
if dataType.IsArray() {
return f.Where("FALSE")
}
arg, ok := filter.ConvertToSafeType(f.Args[0], dataType)
if !ok {
return f.Where("FALSE")
}
query := fmt.Sprintf("%s = ?", column, op)
return f.Where(tx, query, arg)
},
RequiredArguments: 1,
}
Array operators
Some database engines such as PostgreSQL provide operators for array operations (@>
, &&
, ...). You may encounter issue implementing these operators in your project because of GORM converting slices into records (("a", "b")
instead of {"a", "b"}
).
To fix this issue, you will have to implement your own variant of ConvertArgsToSafeType
so it returns a pointer to a slice with a concrete type instead of []any
. By sending a pointer to GORM, it won't try to render the slice itself and pass it directly to the underlying driver, which usually knows how to handle slices for the native types.
Example (using generics):
type argType interface {
string | int64 | uint64 | float64 | bool
}
func init() {
filter.Operators["$arrayin"] = &filter.Operator{
Function: func (tx *gorm.DB, f *filter.Filter, column string, dataType filter.DataType) *gorm.DB {
if !dataType.IsArray() {
return f.Where("FALSE")
}
if dataType == filter.DataTypeEnumArray {
column = fmt.Sprintf("CAST(%s as TEXT[])", column)
}
query := fmt.Sprintf("%s @> ?", column)
switch dataType {
case filter.DataTypeTextArray, filter.DataTypeEnumArray, filter.DataTypeTimeArray:
return bindArrayArg[string](tx, query, f, dataType)
case filter.DataTypeFloat32Array, filter.DataTypeFloat64Array:
return bindArrayArg[float64](tx, query, f, dataType)
case filter.DataTypeUint8Array, filter.DataTypeUint16Array, filter.DataTypeUint32Array, filter.DataTypeUint64Array:
return bindArrayArg[uint64](tx, query, f, dataType)
case filter.DataTypeInt8Array, filter.DataTypeInt16Array, filter.DataTypeInt32Array, filter.DataTypeInt64Array:
return bindArrayArg[int64](tx, query, f, dataType)
}
// If you need to handle DataTypeBoolArray, use pgtype.BoolArray
return f.Where("FALSE")
},
RequiredArguments: 1,
}
}
func bindArrayArg[T argType](tx *gorm.DB, query string, f *filter.Filter, dataType filter.DataType) *gorm.DB {
args, ok := convertArgsToSafeTypeArray[T](f.Args, dataType)
if !ok {
return f.Where("FALSE")
}
return f.Where(tx, query, args)
}
func convertArgsToSafeTypeArray[T argType](args []string, dataType filter.DataType) (*[]T, bool) {
result := make([]T, 0, len(args))
for _, arg := range args {
a, ok := filter.ConvertToSafeType(arg, dataType)
if !ok {
return nil, false
}
result = append(result, a.(T))
}
return &result, true
}
Manual joins
Manual joins are supported and won't clash with joins that are automatically generated by the library. That means that if needed, you can write something like described in the following piece of code.
// database/repository/user.go
func (r *User) Paginate(ctx context.Context, request *filter.Request) (*database.Paginator[*model.User], error) {
var users []*model.User
db := session.DB(ctx, r.DB).Joins("Relation")
paginator, err := filter.Scope(db, request, &users)
return paginator, errors.New(err)
}
Upgrading from Goyave v4 to v5
User parameter are expected to be in the Query
now. Update validation on your routes:
router.Get("/", ctrl.Index).ValidateQuery(filter.Validation)
If your route has custom query parameters as well, you can append the lib's validation:
func IndexRequest(r *goyave.Request) v.RuleSet {
return append(v.RuleSet{
{Path: "foo", Rules: v.List{v.Int(), v.Min(1)}},
}, filter.Validation(r)...)
}
*filter.Settings
now takes a generic parameter: a pointer to the target model. The slice given to the Scope
method is expected to be a pointer to a slice of the same type.
settings := &filter.Settings[*model.User]{}
License
goyave.dev/filter
is MIT Licensed. Copyright (c) 2024 Jérémy LAMBERT (SystemGlitch)