Awesome
op-solver
Algorithms for the Orienteering Problem
In this repository, you will find the implementation of two algorithms to solve the Orienteering Problem (OP):
- RB&C (exact): "A revisited branch-and-cut algorithm for large-scale orienteering problems" by G. Kobeaga, M. Merino and J.A. Lozano
- EA4OP (heuristic): "An evolutionary algorithm for the orienteering problem" by G. Kobeaga, M. Merino and J.A. Lozano
Both algorithms can be used to solve either small or large OP problems. Choose between the heuristic or the exact algorithm depending on your needs.
<p align="center"> <img src="https://user-images.githubusercontent.com/11088290/115864685-849d7400-a437-11eb-88d2-db94b76b3693.gif" alt="animated" width="52.5%" /> </p>Installation
First, obtain the source code,
git clone https://github.com/gkobeaga/op-solver
cd op-solver
install the dependencies,
sudo apt install autoconf automake libtool m4 libgmp-dev
and generate the configure script.
./autogen.sh
mkdir -p build && cd build
Since the external LP solver used in the exact algorithm is proprietary software, there are two options to install our software: to build only the heuristic algorithm or to build both the heuristic and the exact algorithms.
1) Install Heuristic
By default, the solver is built only with the heuristic algorithm:
make clean
../configure
make
2) Install Heuristic and Exact
To build the exact algorithm, you need to have the IBM ILOG CPLEX installed
in your system. To build the op-solver
with the exact algorithm:
make clean
../configure --with-cplex=<CPLEX_PATH>
#../configure --with-cplex=/opt/ibm/ILOG/CPLEX_Studio125/cplex/
make
Usage
Download first the benchmark instances for the OP:
cd build
git clone https://github.com/bcamath-ds/OPLib.git
To solve the problem using the EA4OP algorithm:
./src/op-solver opt --op-exact 0 OPLib/instances/gen3/kroA150-gen3-50.oplib
To solve the OP using the revisited Branch-and-Cut algorithm(RB&C):
./src/op-solver opt --op-exact 1 OPLib/instances/gen3/kroA150-gen3-50.oplib
You can increase the verbosity of the RB&C with:
./src/op-solver opt --op-exact 1 --op-exact-bac-verbose 1 OPLib/instances/gen3/kroA150-gen3-50.oplib
Running on Docker
Only available for the heuristic algorithm.
git clone https://github.com/gkobeaga/op-solver
cd op-solver
docker build -t op-solver .
mkdir tmp
docker run -v $PWD/tmp:/tmp -it --rm op-solver opt /OPLib/instances/gen3/kroA150-gen3-50.oplib
cat tmp/stats.json
Output
By default, the results of the runs are written in a common stats.json
file.
You can specify an alternative file to write the results:
./src/op-solver opt --stats my-stats.json OPLib/instances/gen3/kroA150-gen3-50.oplib
Heuristic Output
The output of the evolutionary algorithm is split into two parts: the population initialization part and the evolution part.
{
"prob": {
"name": "kroA150",
"n": 150,
"d0": 13262
},
"sol": {
"val": 4110,
"cap": 13146,
"sol_ns": 70,
"lb": 4110,
"ub": 1e+30,
"cycle": [ 1, 47, 113, 84, 24, 38, 36, 127, 59, 141, 17, 15, 11, 32, 109, 91, 98, 23, 60,
62, 20, 12, 86, 27, 149, 55, 83, 120, 115, 123, 43, 3, 46, 29, 132, 112, 107,
30, 121, 101, 39, 78, 96, 52, 5, 37, 103, 146, 76, 13, 33, 95, 82, 116, 50, 73,
68, 85, 135, 140, 117, 9, 7, 57, 51, 125, 61, 58, 105, 142 ]
},
"param": {
"time_limit": 18000000,
"init": 2,
"select": 0,
"pinit": 0
},
"stats": {
"time": 205
},
"timestamp": 1618594637202,
"event": "stats_summary",
"env": "cp_init",
"seed": 996021,
"pid": 140336
}
{
"prob": {
"name": "kroA150",
"n": 150,
"d0": 13262
},
"sol": {
"val": 5019,
"cap": 13197,
"sol_ns": 79,
"lb": 5019,
"ub": 1e+30,
"cycle": [ 1, 130, 93, 28, 58, 61, 81, 25, 125, 51, 87, 145, 140, 135, 85, 68, 73, 114,
144, 44, 50, 116, 82, 126, 95, 13, 76, 33, 146, 103, 37, 5, 52, 78, 96, 39,
101, 121, 30, 107, 112, 132, 29, 46, 3, 14, 48, 100, 71, 41, 136, 128, 43,
123, 115, 120, 149, 55, 83, 34, 117, 9, 7, 57, 20, 12, 27, 86, 35, 150, 62,
60, 77, 110, 23, 98, 91, 109, 47 ]
},
"param": {
"time_limit": 18000000,
"it_lim": 2147483647,
"pop_size": 100,
"pop_stop": 25,
"d2d": 50,
"nparsel": 10,
"pmut": 0.01,
"len_improve1": 1,
"len_improve2": 0
},
"stats": {
"time": 748,
"it": 750,
"time_infeas_recover": 711
},
"timestamp": 1618594637951,
"event": "stats_summary",
"env": "cp_heur_ea",
"seed": 996021,
"pid": 140336
}
Note that, the two outputs share the same pid
and
seed
, which can be then used to obtain the total running time.
jq -s 'group_by(.seed, .pid)[] | .[1].stats.time += .[0].stats.time | .[0] * .[1]' stats.json
This jq command will merge the population initialization parameters and evolutionary algorithm parameters, and sum the running times.
{
"prob": {
"name": "kroA150",
"n": 150,
"d0": 13262
},
"sol": {
"val": 5019,
"cap": 13197,
"sol_ns": 79,
"lb": 5019,
"ub": 1e+30,
"cycle": [ 1, 130, 93, 28, 58, 61, 81, 25, 125, 51, 87, 145, 140, 135, 85, 68, 73, 114,
144, 44, 50, 116, 82, 126, 95, 13, 76, 33, 146, 103, 37, 5, 52, 78, 96, 39,
101, 121, 30, 107, 112, 132, 29, 46, 3, 14, 48, 100, 71, 41, 136, 128, 43,
123, 115, 120, 149, 55, 83, 34, 117, 9, 7, 57, 20, 12, 27, 86, 35, 150, 62,
60, 77, 110, 23, 98, 91, 109, 47 ]
},
"param": {
"time_limit": 18000000,
"init": 2,
"select": 0,
"pinit": 0,
"it_lim": 2147483647,
"pop_size": 100,
"pop_stop": 25,
"d2d": 50,
"nparsel": 10,
"pmut": 0.01,
"len_improve1": 1,
"len_improve2": 0
},
"stats": {
"time": 953,
"it": 750,
"time_infeas_recover": 711
},
"timestamp": 1618594637951,
"event": "stats_summary",
"env": "cp_heur_ea",
"seed": 996021,
"pid": 140336
}
RB&C Output
The RB&C algorithm reports the following stats for each of the separation algorithms:
Stat | Description |
---|---|
*_active | Number of times that the separation algorithm was used |
*_success | Number of times that the separation algorithm found at least a violated cut |
*_total | Total number of violated cuts found by the separation algorithm |
*_time | Total running time of the separation algorithm |
{
"prob": {
"name": "kroA150",
"n": 150,
"d0": 13262
},
"sol": {
"val": 5039,
"cap": 13246,
"sol_ns": 79,
"lb": 5039,
"ub": 5039,
"cycle": [ 1, 93, 28, 58, 61, 25, 81, 69, 64, 40, 54, 2, 144, 114, 44, 50, 116, 82, 126,
95, 13, 76, 33, 146, 103, 37, 5, 52, 78, 96, 39, 101, 121, 30, 107, 112, 132,
29, 46, 3, 14, 48, 100, 71, 41, 136, 128, 43, 123, 115, 120, 149, 55, 83, 34,
135, 140, 125, 51, 87, 145, 9, 117, 7, 57, 20, 12, 27, 86, 150, 62, 60, 77,
110, 23, 98, 91, 109, 47 ]
},
"param": {
"sep_logical": 1,
"sep_sec_comps": 1,
"sep_sec_exact": 3,
"sep_sec_cc_2": 0,
"sep_sec_cc_extra": 1,
"sep_blossom_fst": 0,
"sep_blossom_eph": 1,
"sep_blossom_egh": 1,
"sep_cover_edge": 1,
"sep_cover_vertex": 0,
"sep_cover_cycle": 1,
"sep_path": 1,
"sep_loop": 1,
"sep_srk_rule": 4,
"sep_srk_s2": 0,
"sep_srk_s3": 1,
"sep_srk_extra": 1,
"xheur_vph": 1,
"xheur_vph_meta": 1
},
"stats": {
"time": 37247,
"sep_logical_active": 2267,
"sep_logical_success": 290,
"sep_logical_total": 538,
"sep_logical_time": 910,
"sep_sec_comps_active": 2267,
"sep_sec_comps_success": 34,
"sep_sec_comps_total": 727,
"sep_sec_comps_time": 173,
"sep_sec_exact_active": 937,
"sep_sec_exact_success": 754,
"sep_sec_exact_total": 6454,
"sep_sec_exact_time": 3665,
"sep_blossom_fast_active": 961,
"sep_blossom_fast_success": 134,
"sep_blossom_fast_total": 326,
"sep_blossom_fast_time": 583,
"sep_blossom_ghfast_active": 948,
"sep_blossom_ghfast_success": 90,
"sep_blossom_ghfast_total": 160,
"sep_blossom_ghfast_time": 326,
"sep_blossom_mst_active": 0,
"sep_blossom_mst_success": 0,
"sep_blossom_mst_total": 0,
"sep_blossom_mst_time": 0,
"sep_cover_edge_active": 507,
"sep_cover_edge_success": 40,
"sep_cover_edge_total": 40,
"sep_cover_edge_time": 993,
"sep_cover_cycle_active": 884,
"sep_cover_cycle_success": 2,
"sep_cover_cycle_total": 2,
"sep_cover_cycle_time": 58,
"sep_cover_vertex_active": 0,
"sep_cover_vertex_success": 0,
"sep_cover_vertex_total": 40,
"sep_cover_vertex_time": 0,
"sep_path_active": 504,
"sep_path_success": 37,
"sep_path_total": 298,
"sep_path_time": 264,
"sep_loop_time": 13407,
"sep_loop_it_time": 0,
"sep_loop_inner_time": 3075,
"sep_loop_inner_it_time": 1167,
"sep_loop_middle_time": 11909,
"sep_loop_middle_it_time": 10262,
"sep_loop_outer_time": 13407,
"sep_loop_outer_it_time": 2728,
"age_cut_time": 843,
"age_vars_time": 1020,
"add_vars_time": 7045,
"add_cuts_time": 5834,
"xheur_branch_time": 26,
"xheur_sep_time": 2302
},
"timestamp": 1618593157989,
"event": "stats_summary",
"env": "cp_exact_bac",
"seed": 696815,
"pid": 134228
}
Acknowledgments
The RB&C algorithm for large OP problems would not be possible without the following implementations:
- TSP solver Concorde
- The B&C code for "Solving the orienteering problem through branch-and-cut" (provided by Prof. JJ Salazar-González)