Home

Awesome

<h2 align="center"> πŸ›’MARTπŸ›’ <br /> MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction </h2> <p align="center"> <a href="https://scholar.google.com/citations?user=Q0LR04AAAAAJ&hl=ko&oi=ao"><strong>Seongju Lee</strong></a> Β· <a href="https://scholar.google.com/citations?user=0D3_0cAAAAAJ&hl=ko&oi=ao"><strong>Junseok Lee</strong></a> Β· <a href="https://scholar.google.com/citations?user=Ctm3p8wAAAAJ&hl=ko&oi=ao"><strong>Yeonguk Yu</strong></a> Β· <a href="https://scholar.google.com/citations?user=ujWyzcoAAAAJ&hl=ko&oi=ao"><strong>Taeri Kim</strong></a> Β· <a href="https://scholar.google.com/citations?user=QVihy5MAAAAJ&hl=ko"><strong>Kyoobin Lee</strong></a> <br> ECCV 2024 </p> <p align="center"> <!-- <a href=""><strong><code>Project Page</code></strong></a> --> <a href="https://link.springer.com/chapter/10.1007/978-3-031-72848-8_6"><strong><code>ECCV Paper</code></strong></a> <a href="https://arxiv.org/abs/2407.21635"><strong><code>Arxiv</code></strong></a> <a href="https://raw.githubusercontent.com/gist-ailab/MART/main/figures/poster.png"><strong><code>Poster</code></strong></a> <a href="https://github.com/gist-ailab/MART"><strong><code>Source Code</code></strong></a> <a href="#-citation"><strong><code>Cite MART</code></strong></a> </p>

This repo is the official implementation of "MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction (ECCV 2024)"

πŸ“’ Updates

πŸ–ΌοΈ ECCV Poster

model

πŸš€ Getting Started

Environment Setup

  1. Set up a python environment
conda create -n mart python=3.8
conda activate mart
  1. Install requirements using the following command.
pip install -r requirements.txt

πŸš‚ Train & Evaluation

<!-- * Trained and evaluated on NVIDIA GeForce RTX 3090 with python 3.8. -->

πŸ€ NBA Dataset

🚢 ETH-UCY Dataset

🚁 SDD Dataset

πŸ“Š Main Results

πŸ€ NBA Dataset

minADE (4.0s): 0.727
minFDE (4.0s): 0.903

🚢 ETH-UCY Dataset

minADE Table
       ETH    HOTEL    UNIV    ZARA1    ZARA2    AVG
       0.35    0.14    0.25    0.17    0.13    0.21    

minFDE Table
       ETH    HOTEL    UNIV    ZARA1    ZARA2    AVG
       0.47    0.22    0.45    0.29    0.22    0.33    

🚁 SDD Dataset

minADE: 7.43
minFDE: 11.82

🐣 How to reproduce results

πŸ€ NBA Dataset

🚢 ETH-UCY Dataset

🚁 SDD Dataset

πŸ“ Citation

@inproceedings{lee2025mart,
  title = {MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction},
  author = {Lee, Seongju and Lee, Junseok and Yu, Yeonguk and Kim, Taeri and Lee, Kyoobin},
  booktitle = {Computer Vision -- ECCV 2024},
  pages = {89--107},
  year = {2025},
  organization = {Springer}
}

πŸ€— Acknowledgement