Home

Awesome

SC-LIO-SAM

version 2021-06-24

What is SC-LIO-SAM?

Scan Context: A fast and robust place recognition

Examples

We provide example results using MulRan dataset, which provides LiDAR and 9dof IMU data. You can see the parameter file (i.e., params_mulran.yaml) modified for MulRan dataset.

example 1: KAIST02 of MulRan dataset

<p align="center"><img src="SC-LIO-SAM/doc/kaist02.png" width=900></p>

example 2: Riverside03 of MulRan dataset

<p align="center"><img src="SC-LIO-SAM/doc/riverside03.png" width=900></p>

How to use?

  1. You can download the dataset at the MulRan dataset website
  2. Place the directory SC-LIO-SAM under user catkin work space <br> For example,
    cd ~/catkin_ws/src
    git clone https://github.com/gisbi-kim/SC-LIO-SAM.git
    cd ..
    catkin_make
    source devel/setup.bash
    roslaunch lio_sam run.launch # or roslaunch lio_sam run_mulran.launch
    
  3. By following this guideline, you can easily publish the MulRan dataset's LiDAR and IMU topics via ROS.

Dependency

Notes

About performance

Minor

Applications

<p align="center"><img src="SC-LIO-SAM/doc/saver.png" width=800></p> <p align="center"><img src="SC-LIO-SAM/doc/removert_eaxmple.png" width=900></p>

Cite SC-LIO-SAM

@INPROCEEDINGS { gkim-2018-iros,
  author = {Kim, Giseop and Kim, Ayoung},
  title = { Scan Context: Egocentric Spatial Descriptor for Place Recognition within {3D} Point Cloud Map },
  booktitle = { Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems },
  year = { 2018 },
  month = { Oct. },
  address = { Madrid }
}

and

@inproceedings{liosam2020shan,
  title={LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping},
  author={Shan, Tixiao and Englot, Brendan and Meyers, Drew and Wang, Wei and Ratti, Carlo and Rus Daniela},
  booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages={5135-5142},
  year={2020},
  organization={IEEE}
}

Contact

Contributors

Acknowledgement

Update history

TODO