Home

Awesome

PyICP SLAM

Full-python LiDAR SLAM.

Purpose

What is SLAM?

Overview of the PyICP SLAM

Features

How to use

Just run

$ python3 main_icp_slam.py

The details of parameters are eaily found in the argparser in that .py file.

Results (KITTI dataset)

Those results are produced under the same parameter conditions:

Results (left to right):

<img src="docs/fig/00_7000_011.gif" width="200"> <img src="docs/fig/01_7000_011.gif" width="200"> <img src="docs/fig/02_7000_011.gif" width="200"> <img src="docs/fig/03_7000_011.gif" width="200">

<img src="docs/fig/04_7000_011.gif" width="200"> <img src="docs/fig/05_7000_011.gif" width="200"> <img src="docs/fig/06_7000_011.gif" width="200"> <img src="docs/fig/09_7000_017.gif" width="200">

<img src="docs/fig/10_7000_011.gif" width="200"> <img src="docs/fig/11_7000_011.gif" width="200"> <img src="docs/fig/12_7000_011.gif" width="200"> <img src="docs/fig/13_7000_011.gif" width="200">

<img src="docs/fig/14_7000_015.gif" width="200"> <img src="docs/fig/15_7000_011.gif" width="200"> <img src="docs/fig/16_7000_015.gif" width="200"> <img src="docs/fig/17_7000_011.gif" width="200">

<img src="docs/fig/18_7000_011.gif" width="200"> <img src="docs/fig/20_7000_011.gif" width="200">

Some of the results are good, and some of them are not enough. Those results are for the study to understand when is the algorithm works or not.

Findings

Author

  Giseop Kim (paulgkim@kaist.ac.kr)

Contirbutors

  @JustWon
    - Supports Pangolin-based point cloud visualization along the SLAM poses.
    - Go to https://github.com/JustWon/PyICP-SLAM