Home

Awesome

A Survey of Generative AI for de novo Drug Design

Update: our paper has been accepted for Briefings in Bioinformatics!

Repository for the survey paper "A Survey of Generative AI for de novo Drug Discovery: New Frontiers in Molecule and Protein Design".

<p align="center"> Xiangru Tang<sup>1</sup>*, Howard Dai<sup>1</sup>*, Elizabeth Knight<sup>1</sup>*, Yunyang Li<sup>1</sup>, Fang Wu<sup>2</sup>, Tianxiao Li<sup>1</sup>, Mark Gerstein<sup>1</sup> </p> <p align="center"> 1. Yale University; 2. Stanford University<br> (*: Equal Contribution) </p>

Table of Contents

[**] denotes appendix sections.

SectionSubsectionDatasetsMetricsModels
MoleculeTarget-Agnostic GenerationDatasetsMetricsModels
MoleculeTarget-Aware GenerationDatasetsMetricsModels
MoleculeConformation Generation**DatasetsMetricsModels
ProteinRepresentation Learning**DatasetsModels
ProteinStructure PredictionDatasetsMetricsModels
ProteinSequence GenerationDatasetsMetricsModels
ProteinBackbone DesignDatasetsMetricsModels
AntibodyRepresentation Learning**DatasetsModels
AntibodyStructure Prediction**DatasetsMetricsModels
AntibodyCDR Generation**DatasetsMetricsModels
PeptideMisc. Tasks**Models

Cite us

@article{tang2024survey,
  title={A survey of generative ai for de novo drug design: new frontiers in molecule and protein generation},
  author={Tang, Xiangru and Dai, Howard and Knight, Elizabeth and Wu, Fang and Li, Yunyang and Li, Tianxiao and Gerstein, Mark},
  journal={Briefings in Bioinformatics},
  volume={25},
  number={4},
  year={2024},
  publisher={Oxford Academic}
}

Overview of Topics

An overview of topics covered in our paper. Sections highlighted in blue can be found in the main text, while purple sections are extended sections found in the appendix.

<p align="center"> <br> <!-- <img src="GenAIOutline_New.png" alt="generative AI for drug design" width="500"> --> <img src="GenAIOutline_New.png" alt="generative AI for drug design"> </p> <!--- # Technical Background TODO: update the photo with a new screenshot (changed RFDiffusion citation) INSERT TABLE W/ TECH PAPERS * **Paper Title** (Model name) Author1, Author2, ... Conference (Year) -->

Molecule

Target-Agnostic Generation

Datasets

Metrics

Models

Target-Aware Generation

Datasets

Metrics

Models

Conformation Generation (appendix)

Datasets

Metrics

Models

Protein

Representation Learning (appendix)

Datasets

Models

Structure Prediction

Datasets

Metrics

Models

Sequence Generation

Datasets

Models

Backbone Design

Datasets

Metrics

Models

Antibody

Representation Learning (appendix)

Datasets

Models

Structure Prediction (appendix)

Datasets

Metrics

Models

CDR Generation (appendix)

Datasets

Metrics

Models

Peptide

Misc. Tasks

Models