Home

Awesome

SSKT(Accepted WACV2022)

Concept map

concept

Dataset

Pre-trained models

Option

Training

 python main.py --model resnet20  --source_arch resnet50 --sourceKind places365 --result /raid/video_data/output/PreLeKT --dataset stl10 --lr 0.1 --wd 5e-4 --epochs 200 --classifier_loss_method ce --auxiliary_loss_method kd --isSource --multi_source --transfer_module
 python main.py --root_path /raid/video_data/ucf101/ --video_path frames --annotation_path ucf101_01.json  --result_path /raid/video_data/output/PreLeKT --n_classes 400 --n_finetune_classes 101 --model resnet --model_depth 18 --resnet_shortcut A --batch_size 128 --n_threads 4 --pretrain_path /nvadmin/Pretrained_model/resnet-18-kinetics.pth --ft_begin_index 4 --dataset ucf101 --isSource --transfer_module --multi_source

Experiment

Comparison with other knowledge transfer methods.

T<sub>t</sub>ModelKDDMLSSKT(T<sub>s</sub>)
CIFAR10ResNet2091.75±0.2492.37±0.15<b>92.46±0.15 (P+I)
CIFAR10ResNet3292.61±0.3193.26±0.21<b>93.38±0.02 (P+I)
CIFAR100ResNet2068.66±0.24<b>69.48±0.0568.63±0.12 (I)
CIFAR100ResNet3270.5±0.05<b>71.9±0.0370.94±0.36 (P+I)
STL10ResNet2077.67±1.4178.23±1.23<b>84.56±0.35 (P+I)
STL10ResNet3276.07±0.6777.14±1.64<b>83.68±0.28 (I)
VOCResNet1864.11±0.1839.89±0.07<b>76.42±0.06 (P+I)
VOCResNet3464.57±0.1239.97±0.16<b>77.02±0.02 (P+I)
VOCResNet5062.39±0.639.65±0.03<b>77.1±0.14 (P+I)
UCF1013D ResNet18(scratch)-13.8<b>52.19(P+I)
UCF1013D ResNet18(fine-tuning)-83.95<b>84.58 (P)
HMDB513D ResNet18(scratch)-3.01<b>17.91 (P+I)
HMDB513D ResNet18(fine-tuning)-56.44<b>57.82 (P)

The performance comparison with MAXL[4], another auxiliary learning-based transfer learning method

T<sub>t</sub>ModelMAXL (ψ[i])SSKT (T<sub>s</sub>, Loss )T<sub>s</sub> Model
CIFAR10VGG1693.49±0.05 (5)94.1±0.1 (I, F)VGG16
CIFAR10VGG16-<b>94.22±0.02 (I, CE)VGG16
CIFAR10ResNet2091.56±0.16 (10)91.48±0.03 (I, F)VGG16
CIFAR10ResNet20-<b>92.46±0.15 (P+I, CE)ResNet50, ResNet50

Citation

If you use SSKD in your research, please consider citing:

@InProceedings{SSKD_2022_WACV,
author = {Seungbum Hong, Jihun Yoon, and Min-Kook Choi},
title = {Self-Supervised Knowledge Transfer via Loosely Supervised Auxiliary Tasks},
booktitle = {In The IEEE Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022}
}

References