Home

Awesome

<div align="center"> <img src="https://raw.githubusercontent.com/gdikov/hypertunity/master/docs/_static/images/logo.svg?sanitize=true" width="100%"> </div>

CircleCI Documentation Status GitHub

Why Hypertunity

Hypertunity is a lightweight, high-level library for hyperparameter optimisation. Among others, it supports:

For the full set of features refer to the documentation.

Quick start

Define the objective function to optimise. For example, it can take the hyperparameters params as input and return a raw value score as output:

import hypertunity as ht

def foo(**params) -> float:
    # do some very costly computations
    ...
    return score

To define the valid ranges for the values of params we create a Domain object:

domain = ht.Domain({
    "x": [-10., 10.],         # continuous variable within the interval [-10., 10.]
    "y": {"opt1", "opt2"},    # categorical variable from the set {"opt1", "opt2"}
    "z": set(range(4))        # discrete variable from the set {0, 1, 2, 3}
})

Then we set up the optimiser:

bo = ht.BayesianOptimisation(domain=domain)

And we run the optimisation for 10 steps. Each result is used to update the optimiser so that informed domain samples are drawn:

n_steps = 10
for i in range(n_steps):
    samples = bo.run_step(batch_size=2, minimise=True)      # suggest next samples
    evaluations = [foo(**s.as_dict()) for s in samples]     # evaluate foo
    bo.update(samples, evaluations)                         # update the optimiser

Finally, we visualise the results in Tensorboard:

import hypertunity.reports.tensorboard as tb

results = tb.Tensorboard(domain=domain, metrics=["score"], logdir="path/to/logdir")
results.from_history(bo.history)

Even quicker start

A high-level wrapper class Trial allows for seamless parallel optimisation without bothering with scheduling jobs, updating optimisers and logging:

trial = ht.Trial(objective=foo,
                 domain=domain,
                 optimiser="bo",
                 reporter="tensorboard",
                 metrics=["score"])
trial.run(n_steps, batch_size=2, n_parallel=2)

Installation

Using PyPI

To install the base version run:

pip install hypertunity

To use the Tensorboard dashboard, build the docs or run the test suite you will need the following extras:

pip install hypertunity[tensorboard,docs,tests]

From source

Checkout the latest master and install locally:

git clone https://github.com/gdikov/hypertunity.git
cd hypertunity
pip install ./[tensorboard]