Home

Awesome

SIZER Dataset Repository

<p align="center"><img src="https://virtualhumans.mpi-inf.mpg.de/sizer/sizer_teaser.jpg" alt="" width="88%"/></p>

Download Dataset

https://nextcloud.mpi-klsb.mpg.de/index.php/s/nx6wK6BJFZCTF8C/authenticate/showShare

Fill this form

For dataset access

  1. Fill this form
  2. For password, send an email to: gtiwari@mpi-inf.mpg.de

Installation and Datafiles:

Check INSTALL.MD

Dataset Details

A dataset of clothing size variation of approximately 2000 scans including 100 subjects wearing 10 garment classes in different sizes, where we make available, scans, clothing segmentation, SMPL+G registrations, body shape under clothing, garment class and size labels

Data and Annotations

We compare SIZER dataset with existing real world 3D datasets

DataNumber of ScansRegistrationsSegmentationMinimal Clothing/Body under clothingMultiview imagesLabelsDemographics
SIZER~2000SMPL, SMPL+D, SMPL+GUpper, Lower and bodyyescode or scanner images on requestclothing style, size and genderYes(on request)
CAPEDynamic scansSMPL , SMPL+DNoYesNo*GenderNo
THUman2.0~500SMPL , SMPL+XNoYesNo*-No
Clothing StyleNumber of scans
TShirt, Shorts889
Shirt, Pants655
Shirt, Shorts182
Shirt +Coat, Pants252
Hoodies, Pants255
Vest, Short226
Vest, Pants23

Visualize and process data

Visualize scan and clean floor noise

python vis_data/scan_visualise.py --scan=<subjectid>/<scanid> --process remove_floor

This script only visualises original scan and cleaned scan and saves the clean mesh in the same data directory subjectid = {10001, 10005 ....... } scanid = {1937.....} (for 10001)

<p align="center"> Output </p> <p align="center"> <img alt="org_scan" src="data/org_scan.png" width="10%"> &nbsp; &nbsp; &nbsp; &nbsp; <img alt="seg_labels" src="data/seg_labels.png" width="10%"> &nbsp; &nbsp; &nbsp; &nbsp; <img alt="clean_scan" src="data/clean_scan.png" width="10%"> </p> <p align="center"> Original Scan &nbsp; &nbsp; &nbsp; &nbsp; Segmentation Labels &nbsp; &nbsp; &nbsp; &nbsp; Clean Scan </p>

Visualize segmented garment layers

python vis_data/get_garment.py --scan=<subjectid>/<scanid>
<p align="center"> Output </p> <p align="center"> <img alt="org_scan" src="data/shirt.png" width="13%"> &nbsp; &nbsp; &nbsp; &nbsp; <img alt="seg_labels" src="data/pants.png" width="11%"> &nbsp; &nbsp; &nbsp; &nbsp; <img alt="clean_scan" src="data/skin.png" width="9%"> </p> <p align="center"> Original Scan &nbsp; &nbsp; &nbsp; &nbsp; Segmentation Labels &nbsp; &nbsp; &nbsp; &nbsp; Clean Scan </p>

This script only visualises original scan and 3 layers of segmented scan, namely upper garment, lower garment and other.

Visualize registration

python vis_data/visualise_registration.py --scan=<subjectid>/<scanid>

Note: Before using/comparing scans and registrations, align scan, using align_scan() in visualise_registration.py

Evaluate registration

python vis_data/visualise_registration.py --scan=<subjectid>/<scanid>

If you have your own code/method for scan registrations, we here provide a code to evaluate the quality of registration.

Others

We here provide code for using/evaluating SIZER dataset for various tasks such as 3D reconstruction from images, scan fitting etc.

Image based reconstruction

For image based reconstruction, SIZER scans can be rendered and data pair of {image, scans, SMPL params} can be generated for training or evaluation.

Rendering using fixed camera views:

python image_recon/pytorch_renderer.py --mesh_path=<obj_file> --out_dir=<out_dir>

Rendering image, depth and normal

python image_recon/image_renderer.py --mesh_path=<obj_file> --out_dir=<out_dir>

<obj_file> should contain <>.obj and <>.jpg in the same folder with same name. Currently we render from 72 fixed views, This can be changed in create_rotmat() function in image_recon/render_utils.py

<p align="center"> Output </p> <p align="center"> <img alt="org_scan" src="data/9.jpg" width="12%"> &nbsp; &nbsp; &nbsp; &nbsp; <img alt="org_scan" src="data/9_depth.jpg" width="12%"> &nbsp; &nbsp; &nbsp; &nbsp; <img alt="clean_scan" src="data/9_normal.jpg" width="12%"> </p> <p align="center"> RGB render &nbsp; &nbsp; &nbsp; &nbsp; Depth &nbsp; &nbsp; &nbsp; &nbsp; Normal </p>

Creating data pairs:

Coming Soon

If you are using SIZER dataset, please cite:

@inproceedings{tiwari20sizer,
    title = {SIZER: A Dataset and Model for Parsing 3D Clothing and Learning Size Sensitive 3D Clothing},
    author = {Tiwari, Garvita and Bhatnagar, Bharat Lal and Tung, Tony and Pons-Moll, Gerard},
    booktitle = {European Conference on Computer Vision ({ECCV})},
    month = {August},
    organization = {{Springer}},
    year = {2020},
    }

@inproceedings{antic2024close,
    title = {{CloSe}: A {3D} Clothing Segmentation Dataset and Model},
    author = {Antić, Dimitrije and Tiwari, Garvita and Ozcomlekci, Batuhan  and Marin, Riccardo  and Pons-Moll, Gerard},
    booktitle = {International Conference on 3D Vision (3DV)},
    month = {March},
    year = {2024},
}

Also refer to CloSe for diverse poses of SIZER dataset and more accurate and fine-grained clothing segmentaion.