Awesome
text_style_transfer
- This code implemens paper " Style Transfer in Text: Exploration and Evaluation " (https://arxiv.org/abs/1711.06861)
- The model code is based on https://github.com/nyu-dl/dl4mt-tutorial
- The classifier in Evaluation is based on keras: https://github.com/fchollet/keras/blob/master/examples/imdb_bidirectional_lstm.py
- The data is available at https://github.com/fuzhenxin/textstyletransferdata
- If there is any problem, please contact Zhenxin Fu (fuzhenxin95@gmail.com)
- This work is bsed on Theano
- Python requirement: theano numpy matplotlib
Model
Model is in model
model
|style_transfer
| |session_multi_decoder
| | |train.sh
| | |test.sh
| | |com.sh
| | |.......
| |
| |session_auto_encoder
| | |similar to session_multi_decoder
| |
| |session_style
| |similar to session_multi_decoder
|data
Preprocess
cd model/style_transfer/data
python get_dict.py # generate vocabulary
Train and Test
$ cd model/style_transfer/session_multi_decoder
$ ./train.sh # train model
$ ./test.sh # test model
$ ./com.sh # show results in compare.txt
Evaluation
Evaluation tool is in eval
Preprocess
- put glove embedding in eval/word_emb
- run
bash run1.sh
to copy results from model dir to current dir - test1 test2 test3 for different mode (autoencoder, style embedding. multi decoder)
Transfer Strength (Classifier)
$ python classifier data # process data of classifier
$ python classifier train # train classifier
$ python classifier test test1 # test classifier
# test1 is the test result dir
# results in test1/embedding/style0_classification.txt ...
Content reservation
$cd eval
$python emb_test.py test1 # test1 is the test result dir
# results in test1/embedding/style0_semantics.txt ...
Finally, run python eval.py
to show results collection.
Example:
dir_name model_type transfer_strength content_reservation mixture
================================================================================
test1 embedding8 0.267 0.943880306299 0.208126303212
test1 embedding4 0.485 0.915346000157 0.317023657029
test1 embedding 0.593 0.896598659955 0.356930373024
.................
Acknowledgment
Thanks for Fangfang Zhang and Yixin Zhang for helping compose data.