Home

Awesome

deeplabv3

PyTorch implementation of DeepLabV3, trained on the Cityscapes dataset.

demo video with results

Index




Paperspace:

To train models and to run pretrained models (with small batch sizes), you can use an Ubuntu 16.04 P4000 VM with 250 GB SSD on Paperspace. Below I have listed what I needed to do in order to get started, and some things I found useful.

#!/bin/bash

# DEFAULT VALUES
GPUIDS="0"
NAME="paperspace_GPU"


NV_GPU="$GPUIDS" nvidia-docker run -it --rm \
        -p 5584:5584 \
        --name "$NAME""$GPUIDS" \
        -v /home/paperspace:/root/ \
        pytorch/pytorch:0.4_cuda9_cudnn7 bash



Pretrained model:




Train model on Cityscapes:




Evaluation

evaluation/eval_on_val.py:


evaluation/eval_on_val_for_metrics.py:

classes          IoU      nIoU
--------------------------------
road          : 0.918      nan
sidewalk      : 0.715      nan
building      : 0.837      nan
wall          : 0.413      nan
fence         : 0.397      nan
pole          : 0.404      nan
traffic light : 0.411      nan
traffic sign  : 0.577      nan
vegetation    : 0.857      nan
terrain       : 0.489      nan
sky           : 0.850      nan
person        : 0.637    0.491
rider         : 0.456    0.262
car           : 0.897    0.759
truck         : 0.582    0.277
bus           : 0.616    0.411
train         : 0.310    0.133
motorcycle    : 0.322    0.170
bicycle       : 0.583    0.413
--------------------------------
Score Average : 0.593    0.364
--------------------------------


categories       IoU      nIoU
--------------------------------
flat          : 0.932      nan
construction  : 0.846      nan
object        : 0.478      nan
nature        : 0.869      nan
sky           : 0.850      nan
human         : 0.658    0.521
vehicle       : 0.871    0.744
--------------------------------
Score Average : 0.786    0.632
--------------------------------



Visualization

visualization/run_on_seq.py:


visualization/run_on_thn_seq.py:




Documentation of remaining code