Home

Awesome

small-object-detection-benchmark

<a href="https://ieeexplore.ieee.org/document/9897990"><img src="https://img.shields.io/badge/DOI-10.1109%2FICIP46576.2022.9897990-orange.svg" alt="ci"> <a href="https://twitter.com/fcakyon"><img src="https://img.shields.io/badge/twitter-fcakyon_-blue?logo=twitter&style=flat" alt="fcakyon twitter"></a>

🔥 our paper has been presented in ICIP 2022 Bordeaux, France (16-19 October 2022)

📜 List of publications that cite this work (currently 170+)

summary

small-object-detection benchmark on visdrone and xview datasets using fcos, vfnet and tood detectors

refer to Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection for full technical analysis

citation

If you use any file/result from this repo in your work, please cite it as:

@article{akyon2022sahi,
  title={Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection},
  author={Akyon, Fatih Cagatay and Altinuc, Sinan Onur and Temizel, Alptekin},
  journal={2022 IEEE International Conference on Image Processing (ICIP)},
  doi={10.1109/ICIP46576.2022.9897990},
  pages={966-970},
  year={2022}
}

visdrone results

refer to table 1 in Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection for more detail on visdrone results

setupAP<sub>50</sub>AP<sub>50</sub>sAP<sub>50</sub>mAP<sub>50</sub>lresultscheckpoints
FCOS+FI25.814.239.645.1downloadrequest
FCOS+SAHI+PO29.018.941.546.4downloadrequest
FCOS+SAHI+FI+PO31.019.844.649.0downloadrequest
FCOS+SF+SAHI+PO38.125.754.856.9downloaddownload
FCOS+SF+SAHI+FI+PO38.525.955.459.8downloaddownload
---------------------
VFNet+FI28.816.844.047.5downloadrequest
VFNet+SAHI+PO32.021.445.845.5downloadrequest
VFNet+SAHI+FI+PO33.922.449.149.4downloadrequest
VFNet+SF+SAHI+PO41.929.758.860.6downloadrequest
VFNet+SF+SAHI+FI+PO42.229.659.263.3downloadrequest
---------------------
TOOD+FI29.418.144.150.0downloadrequest
TOOD+SAHI31.922.644.045.2downloadrequest
TOOD+SAHI+PO32.522.845.243.6downloadrequest
TOOD+SAHI+FI34.623.848.553.1downloadrequest
TOOD+SAHI+FI+PO34.723.848.950.3downloadrequest
TOOD+SF+FI36.824.453.866.4downloaddownload
TOOD+SF+SAHI42.531.658.061.1downloaddownload
TOOD+SF+SAHI+PO43.131.759.060.2downloaddownload
TOOD+SF+SAHI+FI43.431.759.665.6downloaddownload
TOOD+SF+SAHI+FI+PO43.531.759.865.4downloaddownload

xview results

refer to table 2 in Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection for more detail on xview results

setupAP<sub>50</sub>AP<sub>50</sub>sAP<sub>50</sub>mAP<sub>50</sub>lresultscheckpoints
FCOS+FI2.200.101.807.30downloadrequest
FCOS+SF+SAHI15.811.918.411.0downloaddownload
FCOS+SF+SAHI+PO17.112.220.212.8downloaddownload
FCOS+SF+SAHI+FI15.711.918.414.3downloaddownload
FCOS+SF+SAHI+FI+PO17.012.220.215.8downloaddownload
---------------------
VFNet+FI2.100.501.806.80downloadrequest
VFNet+SF+SAHI16.011.917.613.1downloaddownload
VFNet+SF+SAHI+PO17.713.719.715.4downloaddownload
VFNet+SF+SAHI+FI15.811.917.515.2downloaddownload
VFNet+SF+SAHI+FI+PO17.513.719.617.6downloaddownload
---------------------
TOOD+FI2.100.102.005.20downloadrequest
TOOD+SF+SAHI19.414.622.514.2downloaddownload
TOOD+SF+SAHI+PO20.614.923.617.0downloaddownload
TOOD+SF+SAHI+FI19.214.622.314.7downloaddownload
TOOD+SF+SAHI+FI+PO20.414.923.517.6downloaddownload

env setup

install pytorch:

conda install pytorch=1.10.0 torchvision=0.11.1 cudatoolkit=11.3 -c pytorch

install other requirements:

pip install -r requirements.txt

evaluation

roadmap