Home

Awesome

Fast, Accurate and Lightweight Super-Resolution models arXiv

We present FALSR A,B,C models. The metrics and results can be generated with,

$ python3 calculate.py --pb_path ./pretrained_model/FALSR-A.pb --save_path ./result/

Comparison with state-of-the-art methods

MethodMulAddsParamsSet5Set14BSD100Urban100
SRCNN52.7G57K36.66/0.954232.42/0.906331.36/0.887929.50/0.8946
FSRCNN6.0G12K37.00/0.955832.63/0.908831.53/0.892029.88/0.9020
VDSR612.6G665K37.53/0.958733.03/0.912431.90/0.896030.76/0.9140
DRCN17,974.3G1,774K37.63/0.958833.04/0.911831.85/0.894230.75/0.9133
CNF311.0G337K37.66/0.959033.38/0.913631.91/0.8962-
LapSRN29.9G813K37.52/0.959033.08/0.913031.80/0.895030.41/0.9100
DRRN6,796.9G297K37.74/0.959133.23/0.913632.05/0.897331.23/0.9188
BTSRN207.7G410K37.75/-33.20/-32.05/-31.63/-
MemNet2,662.4G677K37.78/0.959733.28/0.914232.08/0.897831.31/0.9195
SelNet225.7G974K37.89/0.959833.61/0.916032.08/0.8984-
CARN222.8G1,592K37.76/0.959033.52/0.916632.09/0.897831.92/0.9256
CARN-M91.2G412K37.53/0.958333.26/0.914131.92/0.896031.23/0.9194
MoreMNAS-A238.6G1039K37.63/0.958433.23/0.913831.95/0.896131.24/0.9187
MoreMNAS-B256.9G1118K37.58/0.958433.22/0.913531.91/0.895931.14/0.9175
MoreMNAS-C5.5G25K37.06/0.956132.75/0.909431.50/0.890429.92/0.9023
MoreMNAS-D152.4G664K37.57/0.958433.25/0.914231.94/0.896631.25/0.9191
FALSR-A (ours)234.7G1,021K37.82/0.959533.55/0.916832.12/0.898731.93/0.9256
FALSR-B (ours)74.7G326k37.61/0.958533.29/0.914331.97/0.896731.28/0.9191
FALSR-C (ours)93.7G408k37.66/0.958633.26/0.914031.96/0.896531.24/0.9187

Citation

Your citations are welcomed!

@inproceedings{chu2020fast,
  title={Fast, accurate and lightweight super-resolution with neural architecture search},
  author={Chu, Xiangxiang and Zhang, Bo and Ma, Hailong and Xu, Ruijun and Li, Qingyuan},
  booktitle={International Conference on Pattern Recognition, ICPR},
  year={2020}
}