Awesome
Slicedit
Project | Arxiv | Proceedings
[ICML 2024] Official pytorch implementation of the paper: "Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices"
https://github.com/fallenshock/Slicedit/assets/63591190/a92eebce-d276-4bef-a167-3aa272fb58ca
Installation
-
Clone the repository
-
Install the required dependencies:
pip install -r requirements.txt
- Tested with CUDA version 12.0 and diffusers 0.21.2
Usage
-
Place desired input videos into
Videos
folder -
Place desired dataset config yaml file into
yaml_files/dataset_configs
-
Change experiment config .yaml if desired in
yaml_files/exp_configs
Note: The dataset config specifies the video name, source prompt and target prompt(s). Experiment configs specify the hyperparameters for the run. Use the provided default yamls as reference.
-
Run
python main.py --dataset_yaml <path to ds yaml>
- Optional: passing
--use_negative_tar_prompt
improves sharpness.
- Optional: passing
License
This project is licensed under the MIT License.
Citation
If you use this code for your research, please cite our paper:
@InProceedings{cohen2024slicedit,
title={Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices},
author={Cohen, Nathaniel and Kulikov, Vladimir and Kleiner, Matan and Huberman-Spiegelglas, Inbar and Michaeli, Tomer},
booktitle={Proceedings of the 41st International Conference on Machine Learning},
pages={9109--9137},
year={2024},
volume={235},
series={Proceedings of Machine Learning Research},
month={21--27 Jul},
publisher={PMLR},
url={https://proceedings.mlr.press/v235/cohen24a.html},