Awesome
Making Heads or Tails: Towards Semantically Consistent Visual Counterfactuals
This repository provides an implementation of the method from our ECCV 2022 paper to compute semantically consistent visual counterfactuals.
Setup
To setup a conda environment run
conda create -n counterfactuals python==3.8
conda activate counterfactuals
conda install pytorch torchvision torchaudio -c pytorch
conda install yaml
pip install pytorch-lightning
pip install -U albumentations
To use the code, you need to download and extract the CUB-200-2011 dataset manually. Next, you need to set the dataset and output paths in the utils/path.py
file.
Training
For a quick start, download a model trained on CUB using
# Download files
wget -L https://dl.fbaipublicfiles.com/visual_counterfactuals/cub_res50_model.ckpt
wget -L https://dl.fbaipublicfiles.com/visual_counterfactuals/cub_vgg16_model.ckpt
# Place files under your output path specified in `utils/path.py`
# These paths are created automatically when training the model.
mkdir $OUTPUT_PATH
mkdir $OUTPUT_PATH/class_prediction_model_cub_res50
mkdir $OUTPUT_PATH/class_prediction_model_cub_vgg16
mv cub_res50_model.ckpt $OUTPUT_PATH/class_prediction_model_cub_res50/best_model.ckpt
mv cub_vgg16_model.ckpt $OUTPUT_PATH/class_prediction_model_cub_vgg16/best_model.ckpt
Alternatively, you can train an image classifier yourself
# Train a VGG-16 classifier on CUB
python class_prediction_model.py --config_path counterfactuals/configs/class_prediction_model/class_prediction_model_cub_vgg16.yaml
# Train a ResNet-50 classifier on CUB
python class_prediction_model.py --config_path counterfactuals/configs/class_prediction_model/class_prediction_model_cub_res50.yaml
Counterfactuals
Run the following commands to generate counterfactual explanations via different methods. The baseline uses the implementation from Goyal et al. Further, we compute explanations via our method.
# Generate explanations for a VGG-16 CUB classifier via Goyal et al.
python explain_model.py --config_path configs/counterfactuals/counterfactuals_goyal_cub_vgg16.yaml
# Generate explanations for a ResNet-50 CUB classifier via Goyal et al.
python explain_model.py --config_path configs/counterfactuals/counterfactuals_goyal_cub_res50.yaml
# Generate explanations for a VGG-16 classifier via our method
python explain_model.py --config_path configs/counterfactuals/counterfactuals_ours_cub_vgg16.yaml
# Generate explanations for ResNet-50 classifier via our method
python explain_model.py --config_path configs/counterfactuals/counterfactuals_ours_cub_res50.yaml
Results
We obtain the following results with VGG-16 for all edits. Small differences with the results from the paper can be attributed to the variance across different CUB model training runs.
Method | Near KP | Same KP | Number Edits |
---|---|---|---|
Baseline | 57.6 | 8.8 | 5.4 |
Ours | 72.0 | 36.5 | 3.8 |
We obtain the following results with ResNet-50 for all edits.
Method | Near KP | Same KP | Number Edits |
---|---|---|---|
Baseline | 54.0 | 7.4 | 3.5 |
Ours | 64.6 | 31.1 | 2.9 |
Visualization
You can visualize some counterfactual explanations by running the command below. You can update the demo.py
code to visualize other examples. Each row shows a counterfactual edit. The first (top) row shows the first edit, and the last (bottom) row shows the last edit. After the last edit, the model's decision changed to the distractor class.
python demo.py --config_path configs/counterfactuals/counterfactuals_ours_cub_vgg16.yaml
References
@inproceedings{vandenhende2022making,
title={Making Heads or Tails: Towards Semantically Consistent Visual Counterfactuals},
author={Vandenhende, Simon and Mahajan, Dhruv and Radenovic, Filip and Ghadiyaram, Deepti},
booktitle={ECCV 2022},
year={2022}
}
License
Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved.
This source code is licensed under the license found in the LICENSE file in the root directory of this source tree.