Awesome
SAM 2: Segment Anything in Images and Videos
Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, Christoph Feichtenhofer
[Paper
] [Project
] [Demo
] [Dataset
] [Blog
] [BibTeX
]
Segment Anything Model 2 (SAM 2) is a foundation model towards solving promptable visual segmentation in images and videos. We extend SAM to video by considering images as a video with a single frame. The model design is a simple transformer architecture with streaming memory for real-time video processing. We build a model-in-the-loop data engine, which improves model and data via user interaction, to collect our SA-V dataset, the largest video segmentation dataset to date. SAM 2 trained on our data provides strong performance across a wide range of tasks and visual domains.
Latest updates
12/11/2024 -- full model compilation for a major VOS speedup and a new SAM2VideoPredictor
to better handle multi-object tracking
- We now support
torch.compile
of the entire SAM 2 model on videos, which can be turned on by settingvos_optimized=True
inbuild_sam2_video_predictor
, leading to a major speedup for VOS inference. - We update the implementation of
SAM2VideoPredictor
to support independent per-object inference, allowing us to relax the assumption of prompting for multi-object tracking and adding new objects after tracking starts. - See
RELEASE_NOTES.md
for full details.
09/30/2024 -- SAM 2.1 Developer Suite (new checkpoints, training code, web demo) is released
- A new suite of improved model checkpoints (denoted as SAM 2.1) are released. See Model Description for details.
- To use the new SAM 2.1 checkpoints, you need the latest model code from this repo. If you have installed an earlier version of this repo, please first uninstall the previous version via
pip uninstall SAM-2
, pull the latest code from this repo (withgit pull
), and then reinstall the repo following Installation below.
- To use the new SAM 2.1 checkpoints, you need the latest model code from this repo. If you have installed an earlier version of this repo, please first uninstall the previous version via
- The training (and fine-tuning) code has been released. See
training/README.md
on how to get started. - The frontend + backend code for the SAM 2 web demo has been released. See
demo/README.md
for details.
Installation
SAM 2 needs to be installed first before use. The code requires python>=3.10
, as well as torch>=2.5.1
and torchvision>=0.20.1
. Please follow the instructions here to install both PyTorch and TorchVision dependencies. You can install SAM 2 on a GPU machine using:
git clone https://github.com/facebookresearch/sam2.git && cd sam2
pip install -e .
If you are installing on Windows, it's strongly recommended to use Windows Subsystem for Linux (WSL) with Ubuntu.
To use the SAM 2 predictor and run the example notebooks, jupyter
and matplotlib
are required and can be installed by:
pip install -e ".[notebooks]"
Note:
- It's recommended to create a new Python environment via Anaconda for this installation and install PyTorch 2.5.1 (or higher) via
pip
following https://pytorch.org/. If you have a PyTorch version lower than 2.5.1 in your current environment, the installation command above will try to upgrade it to the latest PyTorch version usingpip
. - The step above requires compiling a custom CUDA kernel with the
nvcc
compiler. If it isn't already available on your machine, please install the CUDA toolkits with a version that matches your PyTorch CUDA version. - If you see a message like
Failed to build the SAM 2 CUDA extension
during installation, you can ignore it and still use SAM 2 (some post-processing functionality may be limited, but it doesn't affect the results in most cases).
Please see INSTALL.md
for FAQs on potential issues and solutions.
Getting Started
Download Checkpoints
First, we need to download a model checkpoint. All the model checkpoints can be downloaded by running:
cd checkpoints && \
./download_ckpts.sh && \
cd ..
or individually from:
(note that these are the improved checkpoints denoted as SAM 2.1; see Model Description for details.)
Then SAM 2 can be used in a few lines as follows for image and video prediction.
Image prediction
SAM 2 has all the capabilities of SAM on static images, and we provide image prediction APIs that closely resemble SAM for image use cases. The SAM2ImagePredictor
class has an easy interface for image prompting.
import torch
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
predictor = SAM2ImagePredictor(build_sam2(model_cfg, checkpoint))
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
predictor.set_image(<your_image>)
masks, _, _ = predictor.predict(<input_prompts>)
Please refer to the examples in image_predictor_example.ipynb (also in Colab here) for static image use cases.
SAM 2 also supports automatic mask generation on images just like SAM. Please see automatic_mask_generator_example.ipynb (also in Colab here) for automatic mask generation in images.
Video prediction
For promptable segmentation and tracking in videos, we provide a video predictor with APIs for example to add prompts and propagate masklets throughout a video. SAM 2 supports video inference on multiple objects and uses an inference state to keep track of the interactions in each video.
import torch
from sam2.build_sam import build_sam2_video_predictor
checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
predictor = build_sam2_video_predictor(model_cfg, checkpoint)
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
state = predictor.init_state(<your_video>)
# add new prompts and instantly get the output on the same frame
frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, <your_prompts>):
# propagate the prompts to get masklets throughout the video
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
...
Please refer to the examples in video_predictor_example.ipynb (also in Colab here) for details on how to add click or box prompts, make refinements, and track multiple objects in videos.
Load from 🤗 Hugging Face
Alternatively, models can also be loaded from Hugging Face (requires pip install huggingface_hub
).
For image prediction:
import torch
from sam2.sam2_image_predictor import SAM2ImagePredictor
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
predictor.set_image(<your_image>)
masks, _, _ = predictor.predict(<input_prompts>)
For video prediction:
import torch
from sam2.sam2_video_predictor import SAM2VideoPredictor
predictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-large")
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
state = predictor.init_state(<your_video>)
# add new prompts and instantly get the output on the same frame
frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, <your_prompts>):
# propagate the prompts to get masklets throughout the video
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
...
Model Description
SAM 2.1 checkpoints
The table below shows the improved SAM 2.1 checkpoints released on September 29, 2024.
Model | Size (M) | Speed (FPS) | SA-V test (J&F) | MOSE val (J&F) | LVOS v2 (J&F) |
---|---|---|---|---|---|
sam2.1_hiera_tiny <br /> (config, checkpoint) | 38.9 | 91.2 | 76.5 | 71.8 | 77.3 |
sam2.1_hiera_small <br /> (config, checkpoint) | 46 | 84.8 | 76.6 | 73.5 | 78.3 |
sam2.1_hiera_base_plus <br /> (config, checkpoint) | 80.8 | 64.1 | 78.2 | 73.7 | 78.2 |
sam2.1_hiera_large <br /> (config, checkpoint) | 224.4 | 39.5 | 79.5 | 74.6 | 80.6 |
SAM 2 checkpoints
The previous SAM 2 checkpoints released on July 29, 2024 can be found as follows:
Model | Size (M) | Speed (FPS) | SA-V test (J&F) | MOSE val (J&F) | LVOS v2 (J&F) |
---|---|---|---|---|---|
sam2_hiera_tiny <br /> (config, checkpoint) | 38.9 | 91.5 | 75.0 | 70.9 | 75.3 |
sam2_hiera_small <br /> (config, checkpoint) | 46 | 85.6 | 74.9 | 71.5 | 76.4 |
sam2_hiera_base_plus <br /> (config, checkpoint) | 80.8 | 64.8 | 74.7 | 72.8 | 75.8 |
sam2_hiera_large <br /> (config, checkpoint) | 224.4 | 39.7 | 76.0 | 74.6 | 79.8 |
Speed measured on an A100 with torch 2.5.1, cuda 12.4
. See benchmark.py
for an example on benchmarking (compiling all the model components). Compiling only the image encoder can be more flexible and also provide (a smaller) speed-up (set compile_image_encoder: True
in the config).
Segment Anything Video Dataset
See sav_dataset/README.md for details.
Training SAM 2
You can train or fine-tune SAM 2 on custom datasets of images, videos, or both. Please check the training README on how to get started.
Web demo for SAM 2
We have released the frontend + backend code for the SAM 2 web demo (a locally deployable version similar to https://sam2.metademolab.com/demo). Please see the web demo README for details.
License
The SAM 2 model checkpoints, SAM 2 demo code (front-end and back-end), and SAM 2 training code are licensed under Apache 2.0, however the Inter Font and Noto Color Emoji used in the SAM 2 demo code are made available under the SIL Open Font License, version 1.1.
Contributing
See contributing and the code of conduct.
Contributors
The SAM 2 project was made possible with the help of many contributors (alphabetical):
Karen Bergan, Daniel Bolya, Alex Bosenberg, Kai Brown, Vispi Cassod, Christopher Chedeau, Ida Cheng, Luc Dahlin, Shoubhik Debnath, Rene Martinez Doehner, Grant Gardner, Sahir Gomez, Rishi Godugu, Baishan Guo, Caleb Ho, Andrew Huang, Somya Jain, Bob Kamma, Amanda Kallet, Jake Kinney, Alexander Kirillov, Shiva Koduvayur, Devansh Kukreja, Robert Kuo, Aohan Lin, Parth Malani, Jitendra Malik, Mallika Malhotra, Miguel Martin, Alexander Miller, Sasha Mitts, William Ngan, George Orlin, Joelle Pineau, Kate Saenko, Rodrick Shepard, Azita Shokrpour, David Soofian, Jonathan Torres, Jenny Truong, Sagar Vaze, Meng Wang, Claudette Ward, Pengchuan Zhang.
Third-party code: we use a GPU-based connected component algorithm adapted from cc_torch
(with its license in LICENSE_cctorch
) as an optional post-processing step for the mask predictions.
Citing SAM 2
If you use SAM 2 or the SA-V dataset in your research, please use the following BibTeX entry.
@article{ravi2024sam2,
title={SAM 2: Segment Anything in Images and Videos},
author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and Mintun, Eric and Pan, Junting and Alwala, Kalyan Vasudev and Carion, Nicolas and Wu, Chao-Yuan and Girshick, Ross and Doll{\'a}r, Piotr and Feichtenhofer, Christoph},
journal={arXiv preprint arXiv:2408.00714},
url={https://arxiv.org/abs/2408.00714},
year={2024}
}