Home

Awesome

Octave Convolution

MXNet implementation for:

Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

ImageNet

Ablation

example

Modelbaselinealpha = 0.125alpha = 0.25alpha = 0.5alpha = 0.75
DenseNet-12175.4 / 92.776.1 / 93.075.9 / 93.1----
ResNet-2673.2 / 91.375.8 / 92.676.1 / 92.675.5 / 92.574.6 / 92.1
ResNet-5077.0 / 93.478.2 / 93.978.0 / 93.877.4 / 93.676.7 / 93.0
SE-ResNet-5077.6 / 93.678.7 / 94.178.4 / 94.077.9 / 93.877.4 / 93.5
ResNeXt-5078.4 / 94.0--78.8 / 94.278.4 / 94.077.5 / 93.6
ResNet-10178.5 / 94.179.2 / 94.479.2 / 94.478.7 / 94.1--
ResNeXt-10179.4 / 94.6--79.6 / 94.578.9 / 94.4--
ResNet-20079.6 / 94.780.0 / 94.979.8 / 94.879.5 / 94.7--

Note:

Others

Modelalphalabel smoothing[2]mixup[3]#Params#FLOPsTop1 / Top5
0.75 MobileNet (v1).3752.6 M213 M70.5 / 89.5
1.0 MobileNet (v1).54.2 M321 M72.5 / 90.6
1.0 MobileNet (v2).375Yes3.5 M256 M72.0 / 90.7
1.125 MobileNet (v2).5Yes4.2 M295 M73.0 / 91.2
Oct-ResNet-152.125YesYes60.2 M10.9 G81.4 / 95.4
Oct-ResNet-152 + SE.125YesYes66.8 M10.9 G81.6 / 95.7

Citation

@article{chen2019drop,
  title={Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution},
  author={Chen, Yunpeng and Fan, Haoqi and Xu, Bing and Yan, Zhicheng and Kalantidis, Yannis and Rohrbach, Marcus and Yan, Shuicheng and Feng, Jiashi},
  journal={Proceedings of the IEEE International Conference on Computer Vision},
  year={2019}
}

Third-party Implementations

Acknowledgement

Reference

[1] He K, et al "Identity Mappings in Deep Residual Networks".

[2] Christian S, et al "Rethinking the Inception Architecture for Computer Vision"

[3] Zhang H, et al. "mixup: Beyond empirical risk minimization.".

License

The code and the models are MIT licensed, as found in the LICENSE file.