Home

Awesome

FBX2glTF

License

This is a command line tool for converting 3D model assets on Autodesk's venerable FBX format to glTF 2.0, a modern runtime asset delivery format.

Precompiled binaries releases for Windows, Mac OS X and Linux may be found here.

Bleeding-edge binaries for Windows may be found here. Linux and Mac OS X to come; meanwhile, you can build your own.

Build Status Build status

Running

The tool can be invoked like so:

 > FBX2glTF ~/models/butterfly.fbx

Or perhaps, as part of a more complex pipeline:

 > FBX2glTF --binary --draco --verbose \
          --input ~/models/source/butterfly.fbx \
          --output ~/models/target/butterfly.glb

There are also some friendly & hands-on instructions available over at Facebook.

CLI Switches

You can always run the binary with --help to see what options it takes:

FBX2glTF 0.9.7: Generate a glTF 2.0 representation of an FBX model.
Usage: FBX2glTF [OPTIONS] [FBX Model]

Positionals:
  FBX Model FILE              The FBX model to convert.

Options:
  -h,--help                   Print this help message and exit
  -v,--verbose                Include blend shape tangents, if reported present by the FBX SDK.
  -V,--version
  -i,--input FILE             The FBX model to convert.
  -o,--output TEXT            Where to generate the output, without suffix.
  -e,--embed                  Inline buffers as data:// URIs within generated non-binary glTF.
  -b,--binary                 Output a single binary format .glb file.
  --long-indices (never|auto|always)
                              Whether to use 32-bit indices.
  --compute-normals (never|broken|missing|always)
                              When to compute vertex normals from mesh geometry.
  --anim-framerate (bake24|bake30|bake60)
                              Select baked animation framerate.
  --flip-u                    Flip all U texture coordinates.
  --no-flip-u                 Don't flip U texture coordinates.
  --flip-v                    Flip all V texture coordinates.
  --no-flip-v                 Don't flip V texture coordinates.
  --no-khr-lights-punctual    Don't use KHR_lights_punctual extension to export FBX lights.
  --user-properties           Transcribe FBX User Properties into glTF node and material 'extras'.
  --blend-shape-normals       Include blend shape normals, if reported present by the FBX SDK.
  --blend-shape-tangents      Include blend shape tangents, if reported present by the FBX SDK.
  -k,--keep-attribute (position|normal|tangent|binormial|color|uv0|uv1|auto) ...
                              Used repeatedly to build a limiting set of vertex attributes to keep.
  --fbx-temp-dir DIR          Temporary directory to be used by FBX SDK.


Materials:
  --pbr-metallic-roughness    Try to glean glTF 2.0 native PBR attributes from the FBX.
  --khr-materials-unlit       Use KHR_materials_unlit extension to request an unlit shader.


Draco:
  -d,--draco                  Apply Draco mesh compression to geometries.
  --draco-compression-level INT in [0 - 10]=7
                              The compression level to tune Draco to.
  --draco-bits-for-position INT in [1 - 32]=14
                              How many bits to quantize position to.
  --draco-bits-for-uv INT in [1 - 32]=10
                              How many bits to quantize UV coordinates to.
  --draco-bits-for-normals INT in [1 - 32]=10
                              How many bits to quantize nornals to.
  --draco-bits-for-colors INT in [1 - 32]=8
                              How many bits to quantize colors to.
  --draco-bits-for-other INT in [1 - 32]=8
                              How many bits to quantize all other vertex attributes to.

Some of these switches are not obvious:

Building it on your own

We currently depend on the open source projects Draco, MathFu, Json, cppcodec, CLI11, stb, and fmt; all of which are automatically downloaded and/or built.

At present, only version 2019.2 of the FBX SDK is supported. The build system will not successfully locate any other version.

Linux and MacOS X

Your development environment will need to have:

Then, compilation on Unix machines will look something like:

# Determine SDK location & build settings for Linux vs (Recent) Mac OS X
> if [[ "$OSTYPE" == "darwin"* ]]; then
    export CONAN_CONFIG="-s compiler=apple-clang -s compiler.version=10.0 -s compiler.libcxx=libc++"
    export FBXSDK_TARBALL="https://github.com/zellski/FBXSDK-Darwin/archive/2019.2.tar.gz"
elif [[ "$OSTYPE" == "linux"* ]]; then
    export CONAN_CONFIG="-s compiler.libcxx=libstdc++11"
    export FBXSDK_TARBALL="https://github.com/zellski/FBXSDK-Linux/archive/2019.2.tar.gz"
else
    echo "This snippet only handles Mac OS X and Linux."
fi

# Fetch Project
> git clone https://github.com/facebookincubator/FBX2glTF.git
> cd FBX2glTF

# Fetch and unpack FBX SDK
> curl -sL "${FBXSDK_TARBALL}" | tar xz --strip-components=1 --include */sdk/
# Then decompress the contents
> zstd -d -r --rm sdk

# Install and configure Conan, if needed
> pip3 install conan # or sometimes just "pip"; you may need to install Python/PIP
> conan remote add --force bincrafters https://api.bintray.com/conan/bincrafters/public-conan

# Initialize & run build
> conan install . -i build -s build_type=Release ${CONAN_CONFIG}
> conan build . -bf build

If all goes well, you will end up with a statically linked executable in ./build/FBX2glTF.

Windows

<TODO> the below is out of date

Windows users may download CMake for Windows, install it and run it on the FBX2glTF checkout (choose a build directory distinct from the source).

As part of this process, you will be asked to choose which generator to use. At present, only Visual Studio 2017 or 2019 is supported. Older versions of the IDE are unlikely to successfully build the tool.

Note that the CMAKE_BUILD_TYPE variable from the Unix Makefile system is entirely ignored here; it is when you open the generated solution that you will be choose one of the canonical build types — Debug, Release, MinSizeRel, and so on.

Conversion Process

The actual translation begins with the FBX SDK parsing the input file, and ends with the generation of the descriptive JSON that forms the core of glTF, along with binary buffers that hold geometry and animations (and optionally also emedded resources such as textures.)

In the process, each mesh is ripped apart into a long list of triangles and their associated vertices, with a material assigned to each one. A similar process happens in reverse when we construct meshes and materials that conform to the expectations of the glTF format.

Animations

Every animation in the FBX file becomes an animation in the glTF file. The method used is one of "baking": we step through the interval of time spanned by the animation, keyframe by keyframe, calculate the local transform of each node, and whenever we find any node that's rotated, translated or scaled, we record that fact in the output.

Beyond skeleton-based animation, Blend Shapes are also supported; they are read from the FBX file on a per-mesh basis, and clips can use them by varying the weights associated with each one.

The baking method has the benefit of being simple and precise. It has the drawback of creating potentially very large files. The more complex the animation rig, the less avoidable this data explosion is.

There are three future enhancements we hope to see for animations:

Materials

With glTF 2.0, we leaped headlong into physically-based rendering (PBR), where the canonical way of expressing what a mesh looks like is by describing its visible material in fundamental attributes like "how rough is this surface".

By contrast, FBX's material support remains largely in the older world of Lambert and Phong, with simpler and more direct illumination and shading models. These modes are inherently incompatible — for example, textures in the old workflow often contain baked lighting of the type that would arise naturally in a PBR environment.

Some material settings remain well supported and transfer automatically:

This leaves the other traditional settings, first of Lambert:

(All these can be either constants or textures.)

Exporting as Unlit

If you have a model was constructed using an unlit workflow, e.g. a photogrammetry capture or a landscape with careful baked-in lighting, you may choose to export it using the --khr-materials-common switch. This incurs a dependency on the glTF extension 'KHR_materials_unlit; a client that accepts that extension is making a promise it'll do its best to render pixel values without lighting calculations.

Note that at the time of writing, this glTF extension is still undergoing the ratification process

Exporting as Metallic-Roughness PBR

Given the command line flag --pbr-metallic-roughness, we throw ourselves into the warm embrace of glTF 2.0's PBR preference.

As mentioned above, there is little consensus in the world on how PBR should be represented in FBX. At present, we support only one format: Stingray PBS. This is a feature that comes bundled with Maya, and any PBR model exported through that route should be digested propertly by FBX2glTF.

(A happy note: Allegorithmic's Substance Painter also exports Stingray PBS, when hooked up to Maya.)

Draco Compression

The tool will optionally apply Draco compression to the geometric data of each mesh (vertex indices, positions, normals, per-vertex color, and so on). This can be dramatically effective in reducing the size of the output file, especially for static models.

Enabling this feature adds an expressed required dependency in the glTF on the KHR_draco_geometry_compression extension, and can thus only be loaded by a viewer that is willing and able to decompress the data.

Note that at the time of writing, this glTF extension is still undergoing the ratification process.

Future Improvements

This tool is under continuous development. We do not have a development roadmap per se, but some aspirations have been noted above. The canonical list of active TODO items can be found on GitHub.

Authors

License

FBX2glTF is licensed under the 3-clause BSD license.