Home

Awesome

Learning on Compressed Output (LoCO)

License: CC BY-NC 4.0

Accepted to CVPR 2020

This repo contains the code related to the paper Compressed Volumetric Heatmaps for Multi-Person 3D Pose Estimation accepted to CVPR 2020 with the instructions for training and testing our models on the JTA dataset. Here you can also find the code for training the Volumetric Heatmap Autoencoder.

Some Results

<table> <tr> <th>Input</th> <th>Prediction</th> </tr> <tr> <th><img src=imgs/sample_1.jpg width=400></th> <th><img src=imgs/sample_1.gif width=400></th> </tr> <tr> <th><img src=imgs/sample_2.jpg width=400></th> <th><img src=imgs/sample_2.gif width=400></th> </tr> <tr> <th><img src=imgs/sample_3.jpg width=400></th> <th><img src=imgs/sample_3.gif width=400></th> </tr> <tr> <th><img src=imgs/sample_5.jpg width=400></th> <th><img src=imgs/sample_5.gif width=400></th> </tr> <tr> <th><img src=imgs/sample_4.jpg width=400></th> <th><img src=imgs/sample_4.gif width=400></th> </tr> </table>

Quick Demo

Compile Cuda Kernel

Intructions

Train

Show Visual Results

Show Paper Results

Citation

We believe in open research and we are happy if you find this data useful.
If you use it, please cite our work.

@inproceedings{fabbri2020compressed,
   title     = {Compressed Volumetric Heatmaps for Multi-Person 3D Pose Estimation},
   author    = {Fabbri, Matteo and Lanzi, Fabio and Calderara, Simone and Alletto, Stefano and Cucchiara, Rita},
   booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
   year      = {2020}
 }

License

LoCO</span> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial 4.0 International License</a>.