Awesome
NeurIPS 2019
NeurIPS 2019 paper/news汇总,极市团队整理<br> 时间:2019年12月8日-14日在加拿大温哥华举办<br> 说明:总共接收了6743份投稿,最后接收了1428份论文,21.24%的接收率<br> 接收论文:https://neurips.cc/Conferences/2019/AcceptedPapersInitial(感谢[@hzxie](https://github.com/hzxie))<br><br>
接收论文信息<br> 26.Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices <br> 作者: Vincent S. Chen, Sen Wu, Zhenzhen Weng, Alexander Ratner, Christopher Ré <br> 论文链接:https://arxiv.org/abs/1909.06349 <br>
<br> 25.Adaptive Scheduling for Multi-Task Learning <br> 作者:Sébastien Jean, Orhan Firat, Melvin Johnson <br> 论文链接:https://arxiv.org/abs/1909.06434 <br> <br> 24.Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations <br> 作者:Sawyer Birnbaum, Volodymyr Kuleshov, Zayd Enam, Pang Wei Koh, Stefano Ermon <br> 论文链接:https://arxiv.org/abs/1909.06628 <br> <br> 23.A Step Toward Quantifying Independently Reproducible Machine Learning Research <br> 作者:Edward Raff <br> 论文链接:https://arxiv.org/abs/1909.06674 <br> <br> 22.Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive ConvolutionSpotlight <br> 作者:Thang Vu, Hyunjun Jang, Trung X. Pham, Chang D. Yoo <br> 论文链接:https://arxiv.org/abs/1909.06720 <br> Github链接:https://github.com/thangvubk/Cascade-RPN.git <br> <br> 21.Bayesian Optimization under Heavy-tailed Payoffs <br> 作者:ayak Ray Chowdhury, Aditya Gopalan <br> 论文链接:https://arxiv.org/abs/1909.07040 <br> <br> 20.Band-Limited Gaussian Processes: The Sinc Kernel <br> 作者:Felipe Tobar <br> 论文链接:https://arxiv.org/abs/1909.07279 <br> <br> 19.Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients <br> 作者: Jun Sun, Tianyi Chen, Georgios B. Giannakis, Zaiyue Yang <br> 论文链接:https://arxiv.org/abs/1909.07588 <br> <br> 18.Rethinking Deep Neural Network Ownership Verification: Embedding Passports to Defeat Ambiguity Attacks <br> 作者:Lixin Fan, Kam Woh Ng, Chee Seng Chan <br> 论文链接:https://arxiv.org/abs/1909.07830 <br> Github链接:https://github.com/kamwoh/DeepIPR <br> <br> 17.Multi-mapping Image-to-Image Translation via Learning Disentanglement <br> 作者:Xiaoming Yu, Yuanqi Chen, Thomas Li, Shan Liu, Ge Li <br> 论文链接:https://arxiv.org/abs/1909.07877 <br> Github链接:https://github.com/Xiaoming-Yu/DMIT <br> <br> 16.Gate Decorator: Global Filter Pruning Method for Accelerating Deep Convolutional Neural Networks <br> 作者:Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, Ping Wang <br> 论文链接:https://arxiv.org/abs/1909.08174 <br> Github链接:github.com/youzhonghui/gate-decorator-pruning <br> <br> 15.Hyper-Graph-Network Decoders for Block Codes <br> 作者:Eliya Nachmani, Lior Wolf <br> 论文链接:https://arxiv.org/abs/1909.09036 <br> <br> 14.Adaptively Aligned Image Captioning via Adaptive Attention Time <br> 作者:Lun Huang, Wenmin Wang, Yaxian Xia, Jie Chen <br> 论文链接:https://arxiv.org/abs/1909.09060 <br> Github链接:https://github.com/husthuaan/AAT <br> <br> 13.Weighted Linear Bandits for Non-Stationary Environments <br> 作者:Yoan Russac, Claire Vernade, Olivier Cappé <br> 论文链接:https://arxiv.org/abs/1909.09146 <br> <br> 12.Meta-Inverse Reinforcement Learning with Probabilistic Context Variables <br> 作者:Lantao Yu, Tianhe Yu, Chelsea Finn, Stefano Ermon <br> 论文链接:https://arxiv.org/abs/1909.09314 <br> <br> 11.Computing Full Conformal Prediction Set with Approximate Homotopy <br> 作者:Eugene Ndiaye, Ichiro Takeuchi <br> 论文链接:https://arxiv.org/abs/1909.09365 <br> <br> 10.Verified Uncertainty Calibration <br> 作者:Ananya Kumar, Percy Liang, Tengyu Ma <br> 论文链接:https://arxiv.org/abs/1909.10155 <br> <br> 9.Necessary and Sufficient Conditions for Adaptive, Mirror, and Standard Gradient Methods <br> 作者:Daniel Levy, John C. Duchi <br> 论文链接:https://arxiv.org/abs/1909.10455 <br> <br> 8.Explicitly disentangling image content from translation and rotation with spatial-VAE <br> 作者: Tristan Bepler, Ellen D. Zhong, Kotaro Kelley, Edward Brignole, Bonnie Berger <br> 论文链接:https://arxiv.org/abs/1909.11663 <br> <br> 7.Joint-task Self-supervised Learning for Temporal Correspondence <br> 作者:Xueting Li, Sifei Liu, Shalini De Mello, Xiaolong Wang, Jan Kautz, Ming-Hsuan Yang <br> 论文链接:https://arxiv.org/abs/1909.11895 <br> <br> 6.Deep Model Transferability from Attribution Maps <br> 作者:Jie Song, Yixin Chen, Xinchao Wang, Chengchao Shen, Mingli Song <br> 论文链接:https://arxiv.org/abs/1909.11902 <br> <br> 5.Two Time-scale Off-Policy TD Learning: Non-asymptotic Analysis over Markovian Samples <br> 作者:Tengyu Xu, Shaofeng Zou, Yingbin Liang <br> 论文链接:https://arxiv.org/abs/1909.11907 <br> <br> 4.Debiased Bayesian inference for average treatment effects <br> 作者:Kolyan Ray, Botond Szabo <br> 论文链接:https://arxiv.org/abs/1909.12078 <br> <br> 3.Implicit Semantic Data Augmentation for Deep Networks <br> 作者:Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Cheng Wu, Gao Huang <br> 论文链接:https://arxiv.org/abs/1909.12220 <br> Github链接:https://github.com/blackfeather-wang/ISDA-for-Deep-Networks <br> <br>- Characterizing Bias in Classifiers using Generative Models<br> 作者: Daniel McDuff, Shuang Ma, Yale Song, Ashish Kapoor<br> 论文链接: https://arxiv.org/abs/1906.11891 <br><br>
1.Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video<br> 作者:Jia-Wang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, Ming-Ming Cheng, Ian Reid<br> 项目链接:https://jwbian.net/sc-sfmlearner<br> 论文链接:https://arxiv.org/abs/1908.10553<br> GitHub:https://github.com/JiawangBian/SC-SfMLearner-Release<br>