Home

Awesome

ExpressGNN

This is an implementation of the ExpressGNN proposed in the paper "Efficient Probabilistic Logic Reasoning with Graph Neural Networks".

Requirements

Quick Start

The following command starts the inference on the Kinship-S1 dataset on GPU:

python -m main.train -data_root data/kinship/S1 -slice_dim 8 -batchsize 16 -use_gcn 1 -embedding_size 64 -gcn_free_size 32 -load_method 0 -exp_folder exp -exp_name kinship -device cuda

To run ExpressGNN on the FB15K-237 dataset on GPU, use the follwoing command line:

python -m main.train -data_root data/fb15k-237 -rule_filename cleaned_rules_weight_larger_than_0.9.txt -slice_dim 16 -batchsize 16 -use_gcn 1 -num_hops 1 -embedding_size 128 -gcn_free_size 127 -patience 20 -lr_decay_patience 100 -entropy_temp 1 -load_method 1 -exp_folder exp -exp_name freebase -device cuda