Home

Awesome

<p align="center"> <img src="docs/img/codon.png?raw=true" width="600" alt="Codon"/> </p> <h3 align="center"> <a href="https://docs.exaloop.io/codon" target="_blank"><b>Docs</b></a> &nbsp;&#183;&nbsp; <a href="https://docs.exaloop.io/codon/general/faq" target="_blank"><b>FAQ</b></a> &nbsp;&#183;&nbsp; <a href="https://blog.exaloop.io" target="_blank"><b>Blog</b></a> &nbsp;&#183;&nbsp; <a href="https://join.slack.com/t/exaloop/shared_invite/zt-1jusa4kc0-T3rRWrrHDk_iZ1dMS8s0JQ" target="_blank">Chat</a> &nbsp;&#183;&nbsp; <a href="https://docs.exaloop.io/codon/general/roadmap" target="_blank">Roadmap</a> &nbsp;&#183;&nbsp; <a href="https://exaloop.io/benchmarks" target="_blank">Benchmarks</a> </h3> <a href="https://github.com/exaloop/codon/actions/workflows/ci.yml"> <img src="https://github.com/exaloop/codon/actions/workflows/ci.yml/badge.svg" alt="Build Status"> </a>

What is Codon?

Codon is a high-performance Python implementation that compiles to native machine code without any runtime overhead. Typical speedups over vanilla Python are on the order of 10-100x or more, on a single thread. Codon's performance is typically on par with (and sometimes better than) that of C/C++. Unlike Python, Codon supports native multithreading, which can lead to speedups many times higher still.

Think of Codon as Python reimagined for static, ahead-of-time compilation, built from the ground up with best possible performance in mind.

Goals

Non-goals

Install

Pre-built binaries for Linux (x86_64) and macOS (x86_64 and arm64) are available alongside each release. Download and install with:

/bin/bash -c "$(curl -fsSL https://exaloop.io/install.sh)"

Or you can build from source.

Examples

Codon is a Python-compatible language, and many Python programs will work with few if any modifications:

def fib(n):
    a, b = 0, 1
    while a < n:
        print(a, end=' ')
        a, b = b, a+b
    print()
fib(1000)

The codon compiler has a number of options and modes:

# compile and run the program
codon run fib.py
# 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

# compile and run the program with optimizations enabled
codon run -release fib.py
# 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

# compile to executable with optimizations enabled
codon build -release -exe fib.py
./fib
# 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

# compile to LLVM IR file with optimizations enabled
codon build -release -llvm fib.py
# outputs file fib.ll

See the docs for more options and examples.

You can import and use any Python package from Codon. For example:

from python import matplotlib.pyplot as plt
data = [x**2 for x in range(10)]
plt.plot(data)
plt.show()

(Just remember to set the CODON_PYTHON environment variable to the CPython shared library, as explained in the the docs.)

This prime counting example showcases Codon's OpenMP support, enabled with the addition of one line. The @par annotation tells the compiler to parallelize the following for-loop, in this case using a dynamic schedule, chunk size of 100, and 16 threads.

from sys import argv

def is_prime(n):
    factors = 0
    for i in range(2, n):
        if n % i == 0:
            factors += 1
    return factors == 0

limit = int(argv[1])
total = 0

@par(schedule='dynamic', chunk_size=100, num_threads=16)
for i in range(2, limit):
    if is_prime(i):
        total += 1

print(total)

Codon supports writing and executing GPU kernels. Here's an example that computes the Mandelbrot set:

import gpu

MAX    = 1000  # maximum Mandelbrot iterations
N      = 4096  # width and height of image
pixels = [0 for _ in range(N * N)]

def scale(x, a, b):
    return a + (x/N)*(b - a)

@gpu.kernel
def mandelbrot(pixels):
    idx = (gpu.block.x * gpu.block.dim.x) + gpu.thread.x
    i, j = divmod(idx, N)
    c = complex(scale(j, -2.00, 0.47), scale(i, -1.12, 1.12))
    z = 0j
    iteration = 0

    while abs(z) <= 2 and iteration < MAX:
        z = z**2 + c
        iteration += 1

    pixels[idx] = int(255 * iteration/MAX)

mandelbrot(pixels, grid=(N*N)//1024, block=1024)

GPU programming can also be done using the @par syntax with @par(gpu=True).

Documentation

Please see docs.exaloop.io for in-depth documentation.