Home

Awesome

Deep Action Proposals for Videos

Temporal Action Proposals for long untrimmed videos.

DAPs architecture allows to retrieve segments from long videos where it is likely to find actions with high recall very quickly.

pull arch figure

Welcome

Welcome to our repo! This project hosts a simple, handy interface to generate segments where it is likely to find actions in your videos.

If you find any piece of code valuable for your research please cite this work:

@Inbook{Escorcia2016,
author="Escorcia, Victor and Caba Heilbron, Fabian and Niebles, Juan Carlos and Ghanem, Bernard",
editor="Leibe, Bastian and Matas, Jiri and Sebe, Nicu and Welling, Max",
title="DAPs: Deep Action Proposals for Action Understanding",
bookTitle="Computer Vision -- ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III",
year="2016",
publisher="Springer International Publishing",
address="Cham",
pages="768--784",
isbn="978-3-319-46487-9",
doi="10.1007/978-3-319-46487-9_47",
url="http://dx.doi.org/10.1007/978-3-319-46487-9_47"
}

If you like this project, give us a :star: in the github banner :wink:.

Installation

  1. Ensure that you have gcc, conda, CUDA and CUDNN (optional).

  2. Clone our repo, git clone https://github.com/escorciav/daps/.

  3. Go to our project folder and type bash install.sh.

Notes

What can you find?

Do you want to try?

  1. Download the C3D representation of a couple of videos from here.

  2. Download our model.

  3. Go to our project folder

  4. Activate our conda environment. We reduce your choices to one of the following:

Note for new environment-modules users: You must personalize the script to activate the environment, otherwise it will fail.

  1. Execute: tools/generate_proposals.py -iv video_test_0000541 -ic3d [path-to-c3d-of-videos] -imd [path-our-model]

Questions

Please visit our FAQs, if you have any doubt. In case that your question is not there, send us an email.

<!--Images-->