Home

Awesome

caffe-yolov3-windows

A caffe implementation of MobileNet-YOLO detection network , first train on COCO trainval35k then fine-tune on 07+12 , test on VOC2007

NetworkmAPResolutionDownloadNetScopeInference time (GTX 1080)Inference time (i5-4440)
MobileNet-YOLOv3-Lite0.747320caffemodelgraph6 ms150 ms
MobileNet-YOLOv3-Lite0.757416caffemodelgraph11 ms280 ms

Linux Version

MobileNet-YOLO

Performance

Compare with YOLO , (IOU 0.5)

NetworkmAPWeight sizeResolutionNetScope
MobileNet-YOLOv3-Lite34.0*21.5 mb320graph
MobileNet-YOLOv3-Lite37.3*21.5 mb416graph
MobileNet-YOLOv340.3*22.5 mb416graph
YOLOv3-Tiny33.133.8 mb416

Oringinal darknet-yolov3

Converter

test on coco_minival_lmdb (IOU 0.5)

NetworkmAPResolutionDownloadNetScope
yolov354.4416caffemodelgraph
yolov3-spp59.3608caffemodelgraph

Other models

You can find non-depthwise convolution network here , Yolo-Model-Zoo

networkmAPresolutionmaccparam
PVA-YOLOv30.7034162.55G4.72M
Pelee-YOLOv30.7034164.25G3.85M

Configuring and Building Caffe

Requirements

The build step was the same as MobileNet-SSD-windows

> cd $caffe_root
> script/build_win.cmd 

Mobilenet-YOLO Demo

> cd $caffe_root/
> examples\demo_yolo_lite.cmd

If load success , you can see the image window like this

alt tag

Trainning Prepare

Download lmdb

Unzip into $caffe_root/

Please check the path exist "$caffe_root\examples\VOC0712\VOC0712_trainval_lmdb"

Trainning Mobilenet-YOLOv3

> cd $caffe_root/
> examples\train_yolov3_lite.cmd

Reference

https://github.com/weiliu89/caffe/tree/ssd

https://pjreddie.com/darknet/yolo/

https://github.com/gklz1982/caffe-yolov2

https://github.com/duangenquan/YoloV2NCS

https://github.com/eric612/Vehicle-Detection

https://github.com/eric612/MobileNet-SSD-windows

License and Citation

Please cite MobileNet-YOLO in your publications if it helps your research:

@article{MobileNet-YOLO,
  Author = {eric612,Avisonic},
  Year = {2018}
}