Home

Awesome

Feature-preserving image denoising with multiresolution filters

Final project for ECE251C: Filter banks and wavelets.

The Paper

Summary

Run the code

1) Denoising performance on SIDD

python demo_filters.py # run on an example image

2) Export and Evaluate repeatability on SIFT

Requirements

conda env create -f environment.yml # env name: py36-imgdn
conda create --name py36-imgdn python=3.6
conda activate py36-imgdn
pip install -r requirements.txt

Datasets

`-- datasets/
|   |-- HPatches
|   |   |-- i_ajuntament
|   |   | ...
`-- ...

Export

python export_classical.py export_descriptor configs/example_config.yaml sift_test_small

evaluate

python evaluation.py <path to npz files> [-r, --repeatibility | -o, --outputImg | -homo, --homography ]
python evaluation.py logs/sift_test_small/predictions -r -homo
<!-- - specify the pretrained model -->

Run scripts

./run_export.sh

Run evaluation for different noise

# check help 
python run_eval_good.py -h
python run_eval_good.py test_0330 --dataset hpatches --model sift --runEval
python run_eval_good.py test_0330 --dataset hpatches --model sift -co -ce

Results

Please refer to final_report.pdf and presentation.pdf.

Logging

https://docs.google.com/document/d/1VCM1yOlSXhzatvEgNLB1IoWqT81NWjPtbGr0THJ5uqE/edit#heading=h.nrpj9v3j7ji7

Credits

This implementation is developed by Yigian Wang and You-Yi Jau.