Awesome
Transformer Perceptual Loss for Image Deblurring
This repository is an official implementation of Image Deblurring by Exploring In-depth Properties of Transformer.
Basic usage
from loss.deblur_loss import ReconstructPerceptualLoss as ReconstructLoss
model = yourmodel()
criterion = ReconstructLoss(opt)
model = model.cuda()
criterion.pretrain_mae = criterion.pretrain_mae.to(torch.device('cuda'))
for index, train_data in tqdm(enumerate(train_loader)):
gt, b_img = train_data
b_img = b_img.cuda()
gt_img = gt.cuda()
x = b_img
recover_img = model(x)
losses = criterion(recover_img, gt_img)
grad_loss = losses["total_loss"]
optimizer.zero_grad()
grad_loss.backward()
optimizer.step()
If this repo help you, please cite us:
@article{liang2024image,
title={Image deblurring by exploring in-depth properties of transformer},
author={Liang, Pengwei and Jiang, Junjun and Liu, Xianming and Ma, Jiayi},
journal={IEEE Transactions on Neural Networks and Learning Systems},
year={2024},
publisher={IEEE}
}