Home

Awesome

human-motion-prediction

This is a pytorch implementation of the paper

Julieta Martinez, Michael J. Black, Javier Romero. On human motion prediction using recurrent neural networks. In CVPR 17.

It can be found on arxiv as well: https://arxiv.org/pdf/1705.02445.pdf

The code in the original repository was written by Julieta Martinez and Javier Romero and is accessible here.

If you have any comment on this fork you can email me at [enriccorona93@gmail.com]

Dependencies

Get this code and the data

First things first, clone this repo and get the human3.6m dataset on exponential map format.

git clone https://github.com/enriccorona/human-motion-prediction-pytorch.git
cd human-motion-prediction-pytorch
mkdir data
cd data
wget http://www.cs.stanford.edu/people/ashesh/h3.6m.zip
unzip h3.6m.zip
rm h3.6m.zip
cd ..

Quick demo and visualization

The code in this fork should work exactly as in the original repo:

For a quick demo, you can train for a few iterations and visualize the outputs of your model.

To train, run

python src/translate.py --action walking --seq_length_out 25 --iterations 10000

To save some samples of the model, run

python src/translate.py --action walking --seq_length_out 25 --iterations 10000 --sample --load 10000

Finally, to visualize the samples run

python src/forward_kinematics.py

This should create a visualization similar to this one

<p align="center"> <img src="https://raw.githubusercontent.com/una-dinosauria/human-motion-prediction/master/imgs/walking.gif"><br><br> </p>

Running average baselines

To reproduce the running average baseline results from our paper, run

python src/baselines.py

RNN models

To train and reproduce the results of our models, use the following commands

modelargumentstraining time (gtx 1080)notes
Sampling-based loss (SA)python src/translate.py --action walking --seq_length_out 2545s / 1000 itersRealistic long-term motion, loss computed over 1 second.
Residual (SA)python src/translate.py --residual_velocities --action walking35s / 1000 iters
Residual unsup. (MA)python src/translate.py --residual_velocities --learning_rate 0.005 --omit_one_hot65s / 1000 iters
Residual sup. (MA)python src/translate.py --residual_velocities --learning_rate 0.00565s / 1000 itersbest quantitative.
Untiedpython src/translate.py --residual_velocities --learning_rate 0.005 --architecture basic70s / 1000 iters

You can substitute the --action walking parameter for any action in

["directions", "discussion", "eating", "greeting", "phoning",
 "posing", "purchases", "sitting", "sittingdown", "smoking",
 "takingphoto", "waiting", "walking", "walkingdog", "walkingtogether"]

or --action all (default) to train on all actions.

Citing

If you use our code, please cite our work

@inproceedings{julieta2017motion,
  title={On human motion prediction using recurrent neural networks},
  author={Martinez, Julieta and Black, Michael J. and Romero, Javier},
  booktitle={CVPR},
  year={2017}
}

Acknowledgments

The pre-processed human 3.6m dataset and some of our evaluation code (specially under src/data_utils.py) was ported/adapted from SRNN by @asheshjain399.

Licence

MIT