Home

Awesome

Multispectral conditional Generative Adversarial Nets

This repository is an implementation of "Filmy Cloud Removal on Satellite Imagery with Multispectral Conditional Generative Adversarial Nets".

Results

Requirements

I recommend Anaconda to manage your Python libraries.
Because it is easy to install some of the libraries necessary to prepare the data.

Preparing the data

Please refer to make_dataset/README.md.

Training examples

You need set each parameters in a config file.

CUDA_VISIBLE_DEVICES=0 python train_pix2pix.py --config_path configs/config_nirrgb2rgbcloud.yml --results_dir results/pix2pix

If you want to resume the training from snapshot, use --snapshot option.

Evaluation examples

CUDA_VISIBLE_DEVICES=0 python test.py --dir_nir <path to nir dir> --dir_rgb <path to rgb dir> --imlist_nir <path to nir list file> --imlist_rgb <path to rgb list file> --results_dir results/test_pix2pix --config_path results/pix2pix/config_nirrgb2rgbcloud.yml --gen_model results/pix2pix/Generator_<iterations>.npz

License

Academic use only.