Awesome
dl4clj
Port of deeplearning4j to clojure
Contact info
If you have any questions,
- my email is will@yetanalytics.com
- I'm will_hoyt in the clojurians slack
- twitter is @FeLungz (don't check very often)
TODO
- update examples dir
- finish README
- add in examples using Transfer Learning
- finish tests
- eval is missing regression tests, roc tests
- nn-test is missing regression tests
- spark tests need to be redone
- need dl4clj.core tests
- revist spark for updates
- write specs for user facing functions
- this is very important, match isnt strict for maps
- provides 100% certianty of the input -> output flow
- check the args as they come in, dispatch once I know its safe, test the pure output
- collapse overlapping api namespaces
- add to core use case flows
Features
Stable Features with tests
- Neural Networks DSL
- Early Stopping Training
- Transfer Learning
- Evaluation
- Data import
Features being worked on for 0.1.0
- Clustering (testing in progress)
- Spark (currently being refactored)
- Front End (maybe current release, maybe future release. Not sure yet)
- Version of dl4j is 0.0.8 in this project. Current dl4j version is 0.0.9
- Parallelism
- Kafka support
- Other items mentioned in TODO
Features being worked on for future releases
- NLP
- Computational Graphs
- Reinforement Learning
- Arbiter
Artifacts
NOT YET RELEASED TO CLOJARS
- fork or clone to try it out
If using Maven add the following repository definition to your pom.xml:
<repository>
<id>clojars.org</id>
<url>http://clojars.org/repo</url>
</repository>
Latest release
With Leiningen:
n/a
With Maven:
n/a
<dependency>
<groupId>_</groupId>
<artifactId>_</artifactId>
<version>_</version>
</dependency>
Usage
Things you need to know
-
All functions for creating dl4j objects return code by default
- All of these functions have an option to return the dl4j object
- :as-code? = false
- This because all builders require the code representation of dl4j objects
- this requirement is not going to change
- INDarray creation fns default to objects, this is for convenience
- :as-code? is still respected
- All of these functions have an option to return the dl4j object
-
API functions return code when all args are provided as code
-
API functions return the value of calling the wrapped method when args are provided as a mixture of objects and code or just objects
-
The tests are there to help clarify behavior, if you are unsure of how to use a fn, search the tests
- for questions about spark, refer to the spark section bellow
Example of obj/code duality
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]))
;; as code (the default)
(l/dense-layer-builder
:activation-fn :relu
:learning-rate 0.006
:weight-init :xavier
:layer-name "example layer"
:n-in 10
:n-out 1)
;; =>
(doto
(org.deeplearning4j.nn.conf.layers.DenseLayer$Builder.)
(.nOut 1)
(.activation (dl4clj.constants/value-of {:activation-fn :relu}))
(.weightInit (dl4clj.constants/value-of {:weight-init :xavier}))
(.nIn 10)
(.name "example layer")
(.learningRate 0.006))
;; as an object
(l/dense-layer-builder
:activation-fn :relu
:learning-rate 0.006
:weight-init :xavier
:layer-name "example layer"
:n-in 10
:n-out 1
:as-code? false)
;; =>
#object[org.deeplearning4j.nn.conf.layers.DenseLayer 0x69d7d160 "DenseLayer(super=FeedForwardLayer(super=Layer(layerName=example layer, activationFn=relu, weightInit=XAVIER, biasInit=NaN, dist=null, learningRate=0.006, biasLearningRate=NaN, learningRateSchedule=null, momentum=NaN, momentumSchedule=null, l1=NaN, l2=NaN, l1Bias=NaN, l2Bias=NaN, dropOut=NaN, updater=null, rho=NaN, epsilon=NaN, rmsDecay=NaN, adamMeanDecay=NaN, adamVarDecay=NaN, gradientNormalization=null, gradientNormalizationThreshold=NaN), nIn=10, nOut=1))"]
General usage examples
Importing data
Loading data from a file (here its a csv)
(ns my.ns
(:require [dl4clj.datasets.input-splits :as s]
[dl4clj.datasets.record-readers :as rr]
[dl4clj.datasets.api.record-readers :refer :all]
[dl4clj.datasets.iterators :as ds-iter]
[dl4clj.datasets.api.iterators :refer :all]
[dl4clj.helpers :refer [data-from-iter]]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; file splits (convert the data to records)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def poker-path "resources/poker-hand-training.csv")
;; this is not a complete dataset, it is just here to sever as an example
(def file-split (s/new-filesplit :path poker-path))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; record readers, (read the records created by the file split)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def csv-rr (initialize-rr! :rr (rr/new-csv-record-reader :skip-n-lines 0 :delimiter ",")
:input-split file-split))
;; lets look at some data
(println (next-record! :rr csv-rr :as-code? false))
;; => #object[java.util.ArrayList 0x2473e02d [1, 10, 1, 11, 1, 13, 1, 12, 1, 1, 9]]
;; this is our first line from the csv
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; record readers dataset iterators (turn our writables into a dataset)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def rr-ds-iter (ds-iter/new-record-reader-dataset-iterator
:record-reader csv-rr
:batch-size 1
:label-idx 10
:n-possible-labels 10))
;; we use our record reader created above
;; we want to see one example per dataset obj returned (:batch-size = 1)
;; we know our label is at the last index, so :label-idx = 10
;; there are 10 possible types of poker hands so :n-possible-labels = 10
;; you can also set :label-idx to -1 to use the last index no matter the size of the seq
(def other-rr-ds-iter (ds-iter/new-record-reader-dataset-iterator
:record-reader csv-rr
:batch-size 1
:label-idx -1
:n-possible-labels 10))
(str (next-example! :iter rr-ds-iter :as-code? false))
;; =>
;;===========INPUT===================
;;[1.00, 10.00, 1.00, 11.00, 1.00, 13.00, 1.00, 12.00, 1.00, 1.00]
;;=================OUTPUT==================
;;[0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00]
;; and to show that :label-idx = -1 gives us the same output
(= (next-example! :iter rr-ds-iter :as-code? false)
(next-example! :iter other-rr-ds-iter :as-code? false)) ;; => true
INDArrays and Datasets from clojure data structures
(ns my.ns
(:require [nd4clj.linalg.factory.nd4j :refer [vec->indarray matrix->indarray
indarray-of-zeros indarray-of-ones
indarray-of-rand vec-or-matrix->indarray]]
[dl4clj.datasets.new-datasets :refer [new-ds]]
[dl4clj.datasets.api.datasets :refer [as-list]]
[dl4clj.datasets.iterators :refer [new-existing-dataset-iterator]]
[dl4clj.datasets.api.iterators :refer :all]
[dl4clj.datasets.pre-processors :as ds-pp]
[dl4clj.datasets.api.pre-processors :refer :all]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; INDArray creation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;TODO: consider defaulting to code
;; can create from a vector
(vec->indarray [1 2 3 4])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x269df212 [1.00, 2.00, 3.00, 4.00]]
;; or from a matrix
(matrix->indarray [[1 2 3 4] [2 4 6 8]])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x20aa7fe1
;; [[1.00, 2.00, 3.00, 4.00], [2.00, 4.00, 6.00, 8.00]]]
;; will fill in spareness with zeros
(matrix->indarray [[1 2 3 4] [2 4 6 8] [10 12]])
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x8b7796c
;;[[1.00, 2.00, 3.00, 4.00],
;; [2.00, 4.00, 6.00, 8.00],
;; [10.00, 12.00, 0.00, 0.00]]]
;; can create an indarray of all zeros with specified shape
;; defaults to :rows = 1 :columns = 1
(indarray-of-zeros :rows 3 :columns 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x6f586a7e
;;[[0.00, 0.00],
;; [0.00, 0.00],
;; [0.00, 0.00]]]
(indarray-of-zeros) ;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0xe59ffec 0.00]
;; and if only one is supplied, will get a vector of specified length
(indarray-of-zeros :rows 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x2899d974 [0.00, 0.00]]
(indarray-of-zeros :columns 2)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0xa5b9782 [0.00, 0.00]]
;; same considerations/defaults for indarray-of-ones and indarray-of-rand
(indarray-of-ones :rows 2 :columns 3)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x54f08662 [[1.00, 1.00, 1.00], [1.00, 1.00, 1.00]]]
(indarray-of-rand :rows 2 :columns 3)
;; all values are greater than 0 but less than 1
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x2f20293b [[0.85, 0.86, 0.13], [0.94, 0.04, 0.36]]]
;; vec-or-matrix->indarray is built into all functions which require INDArrays
;; so that you can use clojure data structures
;; but you still have the option of passing existing INDArrays
(def example-array (vec-or-matrix->indarray [1 2 3 4]))
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x5c44c71f [1.00, 2.00, 3.00, 4.00]]
(vec-or-matrix->indarray example-array)
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x607b03b0 [1.00, 2.00, 3.00, 4.00]]
(vec-or-matrix->indarray (indarray-of-rand :rows 2))
;; => #object[org.nd4j.linalg.cpu.nativecpu.NDArray 0x49143b08 [0.76, 0.92]]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data-set creation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def ds-with-single-example (new-ds :input [1 2 3 4]
:output [0.0 1.0 0.0]))
(as-list :ds ds-with-single-example :as-code? false)
;; =>
;; #object[java.util.ArrayList 0x5d703d12
;;[===========INPUT===================
;;[1.00, 2.00, 3.00, 4.00]
;;=================OUTPUT==================
;;[0.00, 1.00, 0.00]]]
(def ds-with-multiple-examples (new-ds
:input [[1 2 3 4] [2 4 6 8]]
:output [[0.0 1.0 0.0] [0.0 0.0 1.0]]))
(as-list :ds ds-with-multiple-examples :as-code? false)
;; =>
;;#object[java.util.ArrayList 0x29c7a9e2
;;[===========INPUT===================
;;[1.00, 2.00, 3.00, 4.00]
;;=================OUTPUT==================
;;[0.00, 1.00, 0.00],
;;===========INPUT===================
;;[2.00, 4.00, 6.00, 8.00]
;;=================OUTPUT==================
;;[0.00, 0.00, 1.00]]]
;; we can create a dataset iterator from the code which creates datasets
;; and set the labels for our outputs (optional)
(def ds-with-multiple-examples
(new-ds
:input [[1 2 3 4] [2 4 6 8]]
:output [[0.0 1.0 0.0] [0.0 0.0 1.0]]))
;; iterator
(def training-rr-ds-iter
(new-existing-dataset-iterator
:dataset ds-with-multiple-examples
:labels ["foo" "baz" "foobaz"]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; data-set normalization
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; this gathers statistics on the dataset and normalizes the data
;; and applies the transformation to all dataset objects in the iterator
(def train-iter-normalized
(c/normalize-iter! :iter training-rr-ds-iter
:normalizer (ds-pp/new-standardize-normalization-ds-preprocessor)
:as-code? false))
;; above returns the normalized iterator
;; to get fit normalizer
(def the-normalizer
(get-pre-processor train-iter-normalized))
Model configuration
Creating a neural network configuration with singe and multiple layers
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.nn.conf.distributions :as dist]
[dl4clj.nn.conf.input-pre-processor :as pp]
[dl4clj.nn.conf.step-fns :as s-fn]))
;; nn/builder has 3 types of args
;; 1) args which set network configuration params
;; 2) args which set default values for layers
;; 3) args which set multi layer network configuration params
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; single layer nn configuration
;; here we are setting network configuration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(nn/builder :optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
:step-fn :default-step-fn
:layers {:dense-layer {:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:learning-rate 0.006
:weight-init :xavier
:layer-name "single layer model example"
:n-in 10
:n-out 20}})
;; there are several options within a nn-conf map which can be configuration maps
;; or calls to fns
;; It doesn't matter which option you choose and you don't have to stay consistent
;; the list of params which can be passed as config maps or fn calls will
;; be enumerated at a later date
(nn/builder :optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
:step-fn (s-fn/new-default-step-fn)
:build? true
;; dont need to specify layer order, theres only one
:layers (l/dense-layer-builder
:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:dist (dist/new-normal-distribution :mean 0 :std 1)
:learning-rate 0.006
:weight-init :xavier
:layer-name "single layer model example"
:n-in 10
:n-out 20))
;; these configurations are the same
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; multi-layer configuration
;; here we are also setting layer defaults
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; defaults will apply to layers which do not specify those value in their config
(nn/builder
:optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
:default-activation-fn :sigmoid
:default-weight-init :uniform
;; we need to specify the layer order
:layers {0 (l/activation-layer-builder
:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:learning-rate 0.006
:weight-init :xavier
:layer-name "example first layer"
:n-in 10
:n-out 20)
1 {:output-layer {:n-in 20
:n-out 2
:loss-fn :mse
:layer-name "example output layer"}}})
;; specifying multi-layer config params
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:minimize? true
:use-drop-connect? false
:lr-score-based-decay-rate 0.002
:regularization? false
;; layer defaults
:default-activation-fn :sigmoid
:default-weight-init :uniform
;; the layers
:layers {0 (l/activation-layer-builder
:activation-fn :relu
:updater :adam
:adam-mean-decay 0.2
:adam-var-decay 0.1
:learning-rate 0.006
:weight-init :xavier
:layer-name "example first layer"
:n-in 10
:n-out 20)
1 {:output-layer {:n-in 20
:n-out 2
:loss-fn :mse
:layer-name "example output layer"}}}
;; multi layer network args
:backprop? true
:backprop-type :standard
:pretrain? false
:input-pre-processors {0 (pp/new-zero-mean-pre-pre-processor)
1 {:unit-variance-processor {}}})
Configuration to Trained models
Multi Layer models
- an implementation of the dl4j mnist classification example
(ns my.ns
(:require [dl4clj.datasets.iterators :as iter]
[dl4clj.datasets.input-splits :as split]
[dl4clj.datasets.record-readers :as rr]
[dl4clj.optimize.listeners :as listener]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.nn.multilayer.multi-layer-network :as mln]
[dl4clj.nn.api.model :refer [init! set-listeners!]]
[dl4clj.nn.api.multi-layer-network :refer [evaluate-classification]]
[dl4clj.datasets.api.record-readers :refer [initialize-rr!]]
[dl4clj.eval.api.eval :refer [get-stats get-accuracy]]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; nn-conf -> multi-layer-network
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def nn-conf
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123 :iterations 1 :regularization? true
;; setting layer defaults
:default-activation-fn :relu :default-l2 7.5e-6
:default-weight-init :xavier :default-learning-rate 0.0015
:default-updater :nesterovs :default-momentum 0.98
;; setting layer configuration
:layers {0 {:dense-layer
{:layer-name "example first layer"
:n-in 784 :n-out 500}}
1 {:dense-layer
{:layer-name "example second layer"
:n-in 500 :n-out 100}}
2 {:output-layer
{:n-in 100 :n-out 10
;; layer specific params
:loss-fn :negativeloglikelihood
:activation-fn :softmax
:layer-name "example output layer"}}}
;; multi layer args
:backprop? true
:pretrain? false))
(def multi-layer-network (c/model-from-conf nn-conf))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; local cpu training with dl4j pre-built iterators
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; lets use the pre-built Mnist data set iterator
(def train-mnist-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? true
:seed 123))
(def test-mnist-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? false
:seed 123))
;; and lets set a listener so we can know how training is going
(def score-listener (listener/new-score-iteration-listener :print-every-n 5))
;; and attach it to our model
;; TODO: listeners are broken, look into log4j warnning
(def mln-with-listener (set-listeners! :model multi-layer-network
:listeners [score-listener]))
(def trained-mln (mln/train-mln-with-ds-iter! :mln mln-with-listener
:iter train-mnist-iter
:n-epochs 15
:as-code? false))
;; training happens because :as-code? = false
;; if it was true, we would still just have a data structure
;; we now have a trained model that has seen the training dataset 15 times
;; time to evaluate our model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;Create an evaluation object
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def eval-obj (evaluate-classification :mln trained-mln
:iter test-mnist-iter))
;; always remember that these objects are stateful, dont use the same eval-obj
;; to eval two different networks
;; we trained the model on a training dataset. We evaluate on a test set
(println (get-stats :evaler eval-obj))
;; this will print the stats to standard out for each feature/label pair
;;Examples labeled as 0 classified by model as 0: 968 times
;;Examples labeled as 0 classified by model as 1: 1 times
;;Examples labeled as 0 classified by model as 2: 1 times
;;Examples labeled as 0 classified by model as 3: 1 times
;;Examples labeled as 0 classified by model as 5: 1 times
;;Examples labeled as 0 classified by model as 6: 3 times
;;Examples labeled as 0 classified by model as 7: 1 times
;;Examples labeled as 0 classified by model as 8: 2 times
;;Examples labeled as 0 classified by model as 9: 2 times
;;Examples labeled as 1 classified by model as 1: 1126 times
;;Examples labeled as 1 classified by model as 2: 2 times
;;Examples labeled as 1 classified by model as 3: 1 times
;;Examples labeled as 1 classified by model as 5: 1 times
;;Examples labeled as 1 classified by model as 6: 2 times
;;Examples labeled as 1 classified by model as 7: 1 times
;;Examples labeled as 1 classified by model as 8: 2 times
;;Examples labeled as 2 classified by model as 0: 3 times
;;Examples labeled as 2 classified by model as 1: 2 times
;;Examples labeled as 2 classified by model as 2: 1006 times
;;Examples labeled as 2 classified by model as 3: 2 times
;;Examples labeled as 2 classified by model as 4: 3 times
;;Examples labeled as 2 classified by model as 6: 3 times
;;Examples labeled as 2 classified by model as 7: 7 times
;;Examples labeled as 2 classified by model as 8: 6 times
;;Examples labeled as 3 classified by model as 2: 4 times
;;Examples labeled as 3 classified by model as 3: 990 times
;;Examples labeled as 3 classified by model as 5: 3 times
;;Examples labeled as 3 classified by model as 7: 3 times
;;Examples labeled as 3 classified by model as 8: 3 times
;;Examples labeled as 3 classified by model as 9: 7 times
;;Examples labeled as 4 classified by model as 2: 2 times
;;Examples labeled as 4 classified by model as 3: 1 times
;;Examples labeled as 4 classified by model as 4: 967 times
;;Examples labeled as 4 classified by model as 6: 4 times
;;Examples labeled as 4 classified by model as 7: 1 times
;;Examples labeled as 4 classified by model as 9: 7 times
;;Examples labeled as 5 classified by model as 0: 2 times
;;Examples labeled as 5 classified by model as 3: 6 times
;;Examples labeled as 5 classified by model as 4: 1 times
;;Examples labeled as 5 classified by model as 5: 874 times
;;Examples labeled as 5 classified by model as 6: 3 times
;;Examples labeled as 5 classified by model as 7: 1 times
;;Examples labeled as 5 classified by model as 8: 3 times
;;Examples labeled as 5 classified by model as 9: 2 times
;;Examples labeled as 6 classified by model as 0: 4 times
;;Examples labeled as 6 classified by model as 1: 3 times
;;Examples labeled as 6 classified by model as 3: 2 times
;;Examples labeled as 6 classified by model as 4: 4 times
;;Examples labeled as 6 classified by model as 5: 4 times
;;Examples labeled as 6 classified by model as 6: 939 times
;;Examples labeled as 6 classified by model as 7: 1 times
;;Examples labeled as 6 classified by model as 8: 1 times
;;Examples labeled as 7 classified by model as 1: 7 times
;;Examples labeled as 7 classified by model as 2: 4 times
;;Examples labeled as 7 classified by model as 3: 3 times
;;Examples labeled as 7 classified by model as 7: 1005 times
;;Examples labeled as 7 classified by model as 8: 2 times
;;Examples labeled as 7 classified by model as 9: 7 times
;;Examples labeled as 8 classified by model as 0: 3 times
;;Examples labeled as 8 classified by model as 2: 3 times
;;Examples labeled as 8 classified by model as 3: 2 times
;;Examples labeled as 8 classified by model as 4: 4 times
;;Examples labeled as 8 classified by model as 5: 3 times
;;Examples labeled as 8 classified by model as 6: 2 times
;;Examples labeled as 8 classified by model as 7: 4 times
;;Examples labeled as 8 classified by model as 8: 947 times
;;Examples labeled as 8 classified by model as 9: 6 times
;;Examples labeled as 9 classified by model as 0: 2 times
;;Examples labeled as 9 classified by model as 1: 2 times
;;Examples labeled as 9 classified by model as 3: 4 times
;;Examples labeled as 9 classified by model as 4: 8 times
;;Examples labeled as 9 classified by model as 6: 1 times
;;Examples labeled as 9 classified by model as 7: 4 times
;;Examples labeled as 9 classified by model as 8: 2 times
;;Examples labeled as 9 classified by model as 9: 986 times
;;==========================Scores========================================
;; Accuracy: 0.9808
;; Precision: 0.9808
;; Recall: 0.9807
;; F1 Score: 0.9807
;;========================================================================
;; can get the stats that are printed via fns in the evaluation namespace
;; after running eval-model-whole-ds
(get-accuracy :evaler evaler-with-stats) ;; => 0.9808
Model Tuning
Early Stopping (controlling training)
-
it is recommened you start here when designing models
-
using dl4clj.core
(ns my.ns
(:require [dl4clj.earlystopping.termination-conditions :refer :all]
[dl4clj.earlystopping.model-saver :refer [new-in-memory-saver]]
[dl4clj.nn.api.multi-layer-network :refer [evaluate-classification]]
[dl4clj.eval.api.eval :refer [get-stats]]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.datasets.iterators :as iter]
[dl4clj.core :as c]))
(def nn-conf
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123
:iterations 1
:regularization? true
;; setting layer defaults
:default-activation-fn :relu
:default-l2 7.5e-6
:default-weight-init :xavier
:default-learning-rate 0.0015
:default-updater :nesterovs
:default-momentum 0.98
;; setting layer configuration
:layers {0 {:dense-layer
{:layer-name "example first layer"
:n-in 784 :n-out 500}}
1 {:dense-layer
{:layer-name "example second layer"
:n-in 500 :n-out 100}}
2 {:output-layer
{:n-in 100 :n-out 10
;; layer specific params
:loss-fn :negativeloglikelihood
:activation-fn :softmax
:layer-name "example output layer"}}}
;; multi layer args
:backprop? true
:pretrain? false))
(def train-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? true
:seed 123))
(def test-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? false
:seed 123))
(def invalid-score-condition (new-invalid-score-iteration-termination-condition))
(def max-score-condition (new-max-score-iteration-termination-condition
:max-score 20.0))
(def max-time-condition (new-max-time-iteration-termination-condition
:max-time-val 10
:max-time-unit :minutes))
(def score-doesnt-improve-condition (new-score-improvement-epoch-termination-condition
:max-n-epoch-no-improve 5))
(def target-score-condition (new-best-score-epoch-termination-condition
:best-expected-score 0.009))
(def max-number-epochs-condition (new-max-epochs-termination-condition :max-n 20))
(def in-mem-saver (new-in-memory-saver))
(def trained-mln
;; defaults to returning the model
(c/train-with-early-stopping
:nn-conf nn-conf
:training-iter train-mnist-iter
:testing-iter test-mnist-iter
:eval-every-n-epochs 1
:iteration-termination-conditions [invalid-score-condition
max-score-condition
max-time-condition]
:epoch-termination-conditions [score-doesnt-improve-condition
target-score-condition
max-number-epochs-condition]
:save-last-model? true
:model-saver in-mem-saver
:as-code? false))
(def model-evaler
(evaluate-classification :mln trained-mln :iter test-mnist-iter))
(println (get-stats :evaler model-evaler))
- explicit, step by step way of doing this
(ns my.ns
(:require [dl4clj.earlystopping.early-stopping-config :refer [new-early-stopping-config]]
[dl4clj.earlystopping.termination-conditions :refer :all]
[dl4clj.earlystopping.model-saver :refer [new-in-memory-saver new-local-file-model-saver]]
[dl4clj.earlystopping.score-calc :refer [new-ds-loss-calculator]]
[dl4clj.earlystopping.early-stopping-trainer :refer [new-early-stopping-trainer]]
[dl4clj.earlystopping.api.early-stopping-trainer :refer [fit-trainer!]]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.nn.multilayer.multi-layer-network :as mln]
[dl4clj.utils :refer [load-model!]]
[dl4clj.datasets.iterators :as iter]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; start with our network config
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def nn-conf
(nn/builder
;; network args
:optimization-algo :stochastic-gradient-descent
:seed 123 :iterations 1 :regularization? true
;; setting layer defaults
:default-activation-fn :relu :default-l2 7.5e-6
:default-weight-init :xavier :default-learning-rate 0.0015
:default-updater :nesterovs :default-momentum 0.98
;; setting layer configuration
:layers {0 {:dense-layer
{:layer-name "example first layer"
:n-in 784 :n-out 500}}
1 {:dense-layer
{:layer-name "example second layer"
:n-in 500 :n-out 100}}
2 {:output-layer
{:n-in 100 :n-out 10
;; layer specific params
:loss-fn :negativeloglikelihood
:activation-fn :softmax
:layer-name "example output layer"}}}
;; multi layer args
:backprop? true
:pretrain? false))
(def mln (c/model-from-conf nn-conf))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; the training/testing data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def train-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? true
:seed 123))
(def test-iter
(iter/new-mnist-data-set-iterator
:batch-size 64
:train? false
:seed 123))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; we are going to need termination conditions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; these allow us to control when we exit training
;; this can be based off of iterations or epochs
;; iteration termination conditions
(def invalid-score-condition (new-invalid-score-iteration-termination-condition))
(def max-score-condition (new-max-score-iteration-termination-condition
:max-score 20.0))
(def max-time-condition (new-max-time-iteration-termination-condition
:max-time-val 10
:max-time-unit :minutes))
;; epoch termination conditions
(def score-doesnt-improve-condition (new-score-improvement-epoch-termination-condition
:max-n-epoch-no-improve 5))
(def target-score-condition (new-best-score-epoch-termination-condition :best-expected-score 0.009))
(def max-number-epochs-condition (new-max-epochs-termination-condition :max-n 20))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; we also need a way to save our model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; can be in memory or to a local directory
(def in-mem-saver (new-in-memory-saver))
(def local-file-saver (new-local-file-model-saver :directory "resources/tmp/readme/"))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; set up your score calculator
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def score-calcer (new-ds-loss-calculator :iter test-iter
:average? true))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; create an early stopping configuration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; termination conditions
;; a way to save our model
;; a way to calculate the score of our model on the dataset
(def early-stopping-conf
(new-early-stopping-config
:epoch-termination-conditions [score-doesnt-improve-condition
target-score-condition
max-number-epochs-condition]
:iteration-termination-conditions [invalid-score-condition
max-score-condition
max-time-condition]
:eval-every-n-epochs 5
:model-saver local-file-saver
:save-last-model? true
:score-calculator score-calcer))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; create an early stopping trainer from our data, model and early stopping conf
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def es-trainer (new-early-stopping-trainer :early-stopping-conf early-stopping-conf
:mln mln
:iter train-iter))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; fit and use our early stopping trainer
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def es-trainer-fitted (fit-trainer! es-trainer :as-code? false))
;; when the trainer terminates, you will see something like this
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO Completed training epoch 14
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO New best model: score = 0.005225599372851298,
;; epoch = 14 (previous: score = 0.018243224899038346, epoch = 7)
;;[nREPL-worker-24] BaseEarlyStoppingTrainer INFO Hit epoch termination condition at epoch 14.
;; Details: BestScoreEpochTerminationCondition(0.009)
;; and if we look at the es-trainer-fitted object we see
;;#object[org.deeplearning4j.earlystopping.EarlyStoppingResult 0x5ab74f27 EarlyStoppingResult
;;(terminationReason=EpochTerminationCondition,details=BestScoreEpochTerminationCondition(0.009),
;; bestModelEpoch=14,bestModelScore=0.005225599372851298,totalEpochs=15)]
;; and our model has been saved to /resources/tmp/readme/bestModel.bin
;; there we have our model config, model params and our updater state
;; we can then load this model to use it or continue refining it
(def loaded-model (load-model! :path "resources/tmp/readme/bestModel.bin"
:load-updater? true))
Transfer Learning (freezing layers)
;; TODO: need to write up examples
Spark Training
dl4j Spark usage
How it is done in dl4clj
- Uses dl4clj.core
- This example uses a fn which takes care of most steps for you
- allows you to pass args as code bc the fn accounts for the multiple spark contexts issue encountered when everything is just a data structure
- This example uses a fn which takes care of most steps for you
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.datasets.iterators :refer [new-iris-data-set-iterator]]
[dl4clj.eval.api.eval :refer [get-stats]]
[dl4clj.spark.masters.param-avg :as master]
[dl4clj.spark.data.java-rdd :refer [new-java-spark-context
java-rdd-from-iter]]
[dl4clj.spark.api.dl4j-multi-layer :refer [eval-classification-spark-mln
get-spark-context]]
[dl4clj.core :as c]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 1, create your model config
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def mln-conf
(nn/builder
:optimization-algo :stochastic-gradient-descent
:default-learning-rate 0.006
:layers {0 (l/dense-layer-builder :n-in 4 :n-out 2 :activation-fn :relu)
1 {:output-layer
{:loss-fn :negativeloglikelihood
:n-in 2 :n-out 3
:activation-fn :soft-max
:weight-init :xavier}}}
:backprop? true
:backprop-type :standard))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 2, training master
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def training-master
(master/new-parameter-averaging-training-master
:build? true
:rdd-n-examples 10
:n-workers 4
:averaging-freq 10
:batch-size-per-worker 2
:export-dir "resources/spark/master/"
:rdd-training-approach :direct
:repartition-data :always
:repartition-strategy :balanced
:seed 1234
:save-updater? true
:storage-level :none))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 3, spark context
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def your-spark-context
(new-java-spark-context :app-name "example app"))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 4, training data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def iris-iter
(new-iris-data-set-iterator
:batch-size 1
:n-examples 5))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, spark mln
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def fitted-spark-mln
(c/train-with-spark :spark-context your-spark-context
:mln-conf mln-conf
:training-master training-master
:iter iris-iter
:n-epochs 1
:as-code? false))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, use spark context from spark-mln to create rdd
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; TODO: eliminate this step
(def our-rdd
(let [sc (get-spark-context fitted-spark-mln :as-code? false)]
(java-rdd-from-iter :spark-context sc
:iter iris-iter)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 6, evaluation model and print stats (poor performance of model expected)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def eval-obj
(eval-classification-spark-mln
:spark-mln fitted-spark-mln
:rdd our-rdd))
(println (get-stats :evaler eval-obj))
- this example demonstrates the dl4j workflow
- NOTE: unlike the previous example, this one requires dl4j objects to be used
- this is becaues spark only wants you to have one spark context at a time
- NOTE: unlike the previous example, this one requires dl4j objects to be used
(ns my.ns
(:require [dl4clj.nn.conf.builders.layers :as l]
[dl4clj.nn.conf.builders.nn :as nn]
[dl4clj.datasets.iterators :refer [new-iris-data-set-iterator]]
[dl4clj.eval.api.eval :refer [get-stats]]
[dl4clj.spark.masters.param-avg :as master]
[dl4clj.spark.data.java-rdd :refer [new-java-spark-context java-rdd-from-iter]]
[dl4clj.spark.dl4j-multi-layer :as spark-mln]
[dl4clj.spark.api.dl4j-multi-layer :refer [fit-spark-mln!
eval-classification-spark-mln]]))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 1, create your model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def mln-conf
(nn/builder
:optimization-algo :stochastic-gradient-descent
:default-learning-rate 0.006
:layers {0 (l/dense-layer-builder :n-in 4 :n-out 2 :activation-fn :relu)
1 {:output-layer
{:loss-fn :negativeloglikelihood
:n-in 2 :n-out 3
:activation-fn :soft-max
:weight-init :xavier}}}
:backprop? true
:as-code? false
:backprop-type :standard))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 2, create a training master
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; not all options specified, but most are
(def training-master
(master/new-parameter-averaging-training-master
:build? true
:rdd-n-examples 10
:n-workers 4
:averaging-freq 10
:batch-size-per-worker 2
:export-dir "resources/spark/master/"
:rdd-training-approach :direct
:repartition-data :always
:repartition-strategy :balanced
:seed 1234
:as-code? false
:save-updater? true
:storage-level :none))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 3, create a Spark Multi Layer Network
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def your-spark-context
(new-java-spark-context :app-name "example app" :as-code? false))
;; new-java-spark-context will turn an existing spark-configuration into a java spark context
;; or create a new java spark context with master set to "local[*]" and the app name
;; set to :app-name
(def spark-mln
(spark-mln/new-spark-multi-layer-network
:spark-context your-spark-context
:mln mln-conf
:training-master training-master
:as-code? false))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 4, load your data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; one way is via a dataset-iterator
;; can make one directly from a dataset (iterator data-set)
;; see: nd4clj.linalg.dataset.api.data-set and nd4clj.linalg.dataset.data-set
;; we are going to use a pre-built one
(def iris-iter
(new-iris-data-set-iterator
:batch-size 1
:n-examples 5
:as-code? false))
;; now lets convert the data into a javaRDD
(def our-rdd
(java-rdd-from-iter :spark-context your-spark-context
:iter iris-iter))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Step 5, fit and evaluate the model
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(def fitted-spark-mln
(fit-spark-mln!
:spark-mln spark-mln
:rdd our-rdd
:n-epochs 1))
;; this fn also has the option to supply :path-to-data instead of :rdd
;; that path should point to a directory containing a number of dataset objects
(def eval-obj
(eval-classification-spark-mln
:spark-mln fitted-spark-mln
:rdd our-rdd))
;; we would want to have different testing and training rdd's but here we are using
;; the data we trained on
;; lets get the stats for how our model performed
(println (get-stats :evaler eval-obj))
Terminology
Coming soon
Packages to come back to:
Implement ComputationGraphs and the classes which use them
- https://deeplearning4j.org/doc/org/deeplearning4j/nn/graph/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/nn/conf/ComputationGraphConfiguration.GraphBuilder.html
- https://deeplearning4j.org/doc/org/deeplearning4j/nn/conf/ComputationGraphConfiguration.html
- https://deeplearning4j.org/doc/org/deeplearning4j/nn/conf/graph/package-frame.html
- https://deeplearning4j.org/doc/org/deeplearning4j/nn/conf/graph/rnn/package-frame.html
NLP
- https://deeplearning4j.org/doc/org/deeplearning4j/bagofwords/vectorizer/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/datasets/vectorizer/Vectorizer.html
- https://deeplearning4j.org/doc/org/deeplearning4j/iterator/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/iterator/provider/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/embeddings/WeightLookupTable.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/embeddings/inmemory/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/embeddings/learning/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/embeddings/learning/impl/elements/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/embeddings/learning/impl/sequence/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/embeddings/loader/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/embeddings/reader/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/embeddings/reader/impl/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/embeddings/wordvectors/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/glove/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/glove/count/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/node2vec/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/paragraphvectors/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/sequencevectors/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/sequencevectors/enums/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/sequencevectors/interfaces/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/sequencevectors/iterators/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/sequencevectors/listeners/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/sequencevectors/sequence/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/sequencevectors/serialization/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/sequencevectors/transformers/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/sequencevectors/transformers/impl/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/sequencevectors/transformers/impl/iterables/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/word2vec/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/word2vec/iterator/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/word2vec/wordstore/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/models/word2vec/wordstore/inmemory/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/annotator/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/corpora/sentiwordnet/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/corpora/treeparser/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/corpora/treeparser/transformer/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/documentiterator/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/documentiterator/interoperability/DocumentIteratorConverter.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/inputsanitation/InputHomogenization.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/invertedindex/InvertedIndex.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/labels/LabelsProvider.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/movingwindow/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/sentenceiterator/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/sentenceiterator/interoperability/SentenceIteratorConverter.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/sentenceiterator/labelaware/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/stopwords/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/tokenization/tokenizer/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/tokenization/tokenizer/preprocessor/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/tokenization/tokenizer/tokenprepreprocessor/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/tokenization/tokenizerfactory/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/text/uima/UimaResource.html
Parallelism
- https://deeplearning4j.org/doc/org/deeplearning4j/parallelism/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/parallelism/factory/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/parallelism/main/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/parallelism/parameterserver/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/parallelism/trainer/package-summary.html
TSNE
UI
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/activation/PathUpdate.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/api/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/components/chart/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/components/chart/style/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/components/component/ComponentDiv.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/components/component/style/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/components/decorator/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/components/decorator/style/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/components/table/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/components/table/style/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/components/text/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/components/text/style/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/flow/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/flow/beans/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/flow/data/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/i18n/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/module/convolutional/ConvolutionalListenerModule.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/module/defaultModule/DefaultModule.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/module/flow/FlowListenerModule.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/module/histogram/HistogramModule.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/module/remote/RemoteReceiverModule.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/module/train/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/module/tsne/TsneModule.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/nearestneighbors/word2vec/NearestNeighborsQuery.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/play/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/play/misc/FunctionUtil.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/play/staticroutes/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/providers/ObjectMapperProvider.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/renders/PathUpdate.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/standalone/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/stats/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/stats/api/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/stats/impl/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/stats/impl/java/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/stats/sbe/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/storage/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/storage/impl/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/storage/mapdb/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/storage/sqlite/J7FileStatsStorage.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/weights/package-summary.html
- https://deeplearning4j.org/doc/org/deeplearning4j/ui/weights/beans/CompactModelAndGradient.html
License
Copyright © 2016 Engagor
Distributed under the BSD Clause-2 License as distributed in the file LICENSE at the root of this repository.
Drops the mic