Home

Awesome

Exploring Evolution-aware & free protein language models as protein function predictors

dataset:

Metal Ion Binding dataset:

data/

└── Metal Ion Binding/

Antibiotic Resistance dataset:

data/

└── Antibiotic Resistance/

For SSP & Contact map:

ESMStructuralSplitDataset:

NameDescriptionURL
splitstrain/valid splitshttps://dl.fbaipublicfiles.com/fair-esm/structural-data/splits.tar.gz
pklpkl objects containing sequence, SSP labels, distance map, and 3d coordinateshttps://dl.fbaipublicfiles.com/fair-esm/structural-data/pkl.tar.gz
msasa3m files containing MSA for each domainhttps://dl.fbaipublicfiles.com/fair-esm/structural-data/msas.tar.gz

from https://github.com/facebookresearch/esm

For Contact map Test:

CAMEO(https://www.cameo3d.org/)

For Fitness dataset:

Tape(https://github.com/songlab-cal/tape)

For pretrain ESM-1b & MSA-Transformer

Alphafold2 training data:

https://registry.opendata.aws/openfold/

from Openfold(https://github.com/aqlaboratory/openfold)

Env:

Jax(Alphafold2):

https://github.com/kalininalab/alphafold_non_docker

Pytorch(ESM-1b,MSA-Transformer):

  1. As a prerequisite, you must have PyTorch installed(https://pytorch.org/get-started/locally/).

  2. pip install fair-esm # latest release, OR:

    pip install git+https://github.com/facebookresearch/esm.git

@article{hu2022exploring,
  title={Exploring evolution-aware \&-free protein language models as protein function predictors},
  author={Hu, Mingyang and Yuan, Fajie and Yang, Kevin K and Ju, Fusong and Su, Jin and Wang, Hui and Yang, Fei and Ding, Qiuyang},
  journal={arXiv preprint arXiv:2206.06583},
  year={2022}
}