Awesome
S<sup>2</sup>Contact: Graph-based Network for 3D Hand-Object Contact Estimation with Semi-Supervised Learning
This repo contains details for our paper: "S<sup>2</sup>Contact: Graph-based Network for 3D Hand-Object Contact Estimation with Semi-Supervised Learning" (ECCV 2022)
Installation
This document contains detailed instructions for installing the necessary dependencied for S<sup>2</sup>Contact.
-
Create and activate a conda environment
conda create -n s2contact python=3.8 conda activate s2contact
-
Install PyTorch and PyTorch3D
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2 conda install -c fvcore -c iopath -c conda-forge fvcore iopath conda install pytorch3d -c pytorch3d
-
Install PyTorch-Geometric Please following this installation instructions
-
Install Other dependencies
pip install git+https://github.com/hassony2/manopth.git open3d tensorboardX pyquaternion trimesh transforms3d chumpy opencv-python
-
Download MANO Model Download the MANO model files (mano_v1_2.zip) from MANO website.
mano/webuser/lbs.py mano/models/MANO_RIGHT.pkl
Quick Start
- Quick Demo
python network/run_contactopt.py --split=demo --model=dgcnn python network/run_eval.py --split=demo --model=dgcnn python network/run_eval.py --split=demo --model=dgcnn --vis
TODO
- To release pseudo labeled dataset.
- Upload paper to arXiv.
Acknowledgement
This repo is built upon ContactOpt. We would like to thank their authors for providing great frameworks and toolkits.
Contact
-
Zhongqun Zhang (email: zxz064@student.bham.ac.uk)
-
Tze Ho Elden Tse (email: txt994@student.bham.ac.uk)
Feel free to contact me if you have additional questions.