Home

Awesome

Cost-Sensitive Multi-Label Classification

Python implementation of our paper Cost-Sensitive Label Embedding for Multi-Label Classification and related algorithms, including:

If you find our paper or implementation is useful in your research, please consider citing our paper for CLEMS and the references below for other algorithms.

@article{Huang2017clems,
    author    = {Kuan-Hao Huang and
                 Hsuan-Tien Lin},
    title     = {Cost-sensitive label embedding for multi-label classification},
    journal   = {Machine Learning},
    volume    = {106},
    number    = {9-10},
    pages     = {1725--1746},
    year      = {2017},
}

Prerequisites

Usage

$ python demo.py

Dataset

Evaluation Criteria

Result

============================================================
algorithm  hamming_loss  rank_loss  f1_score  accuracy_score
============================================================
       BR        0.0907     1.1844    0.5742          0.5627
       CC        0.0880     1.1424    0.5947          0.5851
      PCC        0.0900     0.6898    0.7460          0.6909
      CFT        0.0867     0.9460    0.6478          0.6267
    CLEMS        0.0825     0.6553    0.7690          0.7600
============================================================

Reference

Author

Kuan-Hao Huang / @ej0cl6