Home

Awesome

Data Downloading and Processing Pipeline for OVEN

<p align="center"> <img src="assets/oven.png" width="100%"> <br> OVEN models recognize the Visual Entity on the Wikipedia, from images in the wild </p>

Open-domain Visual Entity Recognition: Towards Recognizing Millions of Wikipedia Entities (ICCV 2023 Oral)

Hexiang Hu, Yi Luan, Yang Chen, Urvashi Khandelwal, Mandar Joshi, Kenton Lee, Kristina Toutanova, Ming-Wei Chang.

Release

OVEN Dataset

To download annotations and an image snapshot, check out Huggingface dataset at 🤗: ychenNLP/oven, which support high-speed wget command.

To download all images from the source dataset, please go to "image_downloads/" and run all download scripts. Then run the following script to merge all data with ovenid2impath.csv:

python merge_oven_images.py

Evaluation

python run_oven_eval.py

# ===== BLIP2 Zeroshot ====
# ===== Validation ========
# ===== Final score 7.87
# ===== Query Split score 20.58
# ===== Entity Split score 4.87
# ===== Query Seen Accuracy 24.63
# ===== Query Unseen Accuracy 17.68
# ===== Entity Seen Accuracy 8.55
# ===== Entity Unseen Accuracy 3.4

Starting Code

python run_blip2_oven.py --split val_entity
python run_bm25_query.py --input_file {INPUT} --output_file {OUTPUT}
python run_bm25_index.py

Acknowledgement

If you find OVEN useful for your research and applications, please cite using this BibTeX:

@article{hu2023open,
  title={Open-domain Visual Entity Recognition: Towards Recognizing Millions of Wikipedia Entities},
  author={Hu, Hexiang and Luan, Yi and Chen, Yang and Khandelwal, Urvashi and Joshi, Mandar and Lee, Kenton and Toutanova, Kristina and Chang, Ming-Wei},
  journal={arXiv preprint arXiv:2302.11154},
  year={2023}
}