Awesome
<div align="center"> [CVPR 2024] <i>ECLIPSE</i>: Revisiting the Text-to-Image Prior for Effecient Image Generation </div>
<div align="center"> <a href="https://eclipse-t2i.vercel.app/"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Vercel&color=blue&logo=vercel"></a>   <a href="https://arxiv.org/abs/2312.04655/"><img src="https://img.shields.io/static/v1?label=ArXiv&message=2312.04655&color=B31B1B&logo=arxiv"></a>   <a href="https://huggingface.co/spaces/ECLIPSE-Community/ECLIPSE-Kandinsky-v2.2"><img src="https://img.shields.io/static/v1?label=Demo ECLIPSE&message=HuggingFace&color=yellow"></a>   <img src="assets/eclipse_solar_eclipse.png" alt="Solar Eclipse image generated by ECLIPSE" title="Solar Eclipse image generated by ECLIPSE" width="60%" /> </div>This repository contains the inference code for our paper, ECLIPSE. We show how to utilize the pre-trained ECLIPSE text-to-image prior associated with diffusion image decoders such as Karlo and Kandinsky.
- ECLIPSE presents the tiny prior learning strategy that compresses the previous prior models from 1 billion parameters down to 33 million parameters.
- Additionally, ECLIPSE prior is trained on a mere 5 million image-text (alt-text) pairs.
News: Checkout our latest work, λ-ECLIPSE extending the T2I priors for effecient zero-shot multi-subject driven text-to-image generations.
Please follow the below steps to run the inference locally.
Qualitative Comparisons:
Quantitative Comparisons:
TODOs:
-
Release ECLIPSE priors for Kandinsky v2.2 and Karlo-v1-alpha. -
Release the demo. - Release ECLIPSE prior with Kandinsky v2.2 LCM decoder. (soon!)
- Release ECLIPSE prior training code. (will be released in seperate repository)
Setup
Installation
git clone git@github.com:eclipse-t2i/eclipse-inference.git
conda create -p ./venv python=3.9
pip install -r requirements.txt
Demo
conda activate ./venv
gradio main.py
Run Inference
This repository supports two pre-trained image decoders: Karlo-v1-alpha and Kandinsky-v2.2.
Note: ECLIPSE prior is not a diffusion model -- while image decoders are.
Kandinsky Inference
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from src.pipelines.pipeline_kandinsky_prior import KandinskyPriorPipeline
from src.priors.prior_transformer import PriorTransformer
from diffusers import DiffusionPipeline
text_encoder = (
CLIPTextModelWithProjection.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
projection_dim=1280,
torch_dtype=torch.float32,
)
)
tokenizer = CLIPTokenizer.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
)
prior = PriorTransformer.from_pretrained("ECLIPSE-Community/ECLIPSE_KandinskyV22_Prior")
pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior",
prior=prior,
text_encoder=text_encoder,
tokenizer=tokenizer,
).to("cuda")
pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder").to("cuda")
prompt = "black apples in the basket"
image_embeds, negative_image_embeds = pipe_prior(prompt).to_tuple()
images = pipe(
num_inference_steps=50,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
).images
images[0]
Karlo Inference
from src.pipelines.pipeline_unclip import UnCLIPPipeline
from src.priors.prior_transformer import PriorTransformer
prior = PriorTransformer.from_pretrained("ECLIPSE-Community/ECLIPSE_Karlo_Prior")
pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", prior=prior).to("cuda")
prompt="black apples in the basket"
images = pipe(prompt, decoder_guidance_scale=7.5).images
images[0]
Acknowledgement
We would like to acknoweldge excellent open-source text-to-image models (Kalro and Kandinsky) without them this work would not have been possible. Also, we thank HuggingFace for streamlining the T2I models.