Home

Awesome

Beeswarm-style plots with ggplot2

Build
Status CRAN
status

Introduction

Beeswarm plots (aka column scatter plots or violin scatter plots) are a way of plotting points that would ordinarily overlap so that they fall next to each other instead. In addition to reducing overplotting, it helps visualize the density of the data at each point (similar to a violin plot), while still showing each data point individually.

ggbeeswarm provides two different methods to create beeswarm-style plots using ggplot2. It does this by adding two new ggplot geom objects:

Features:

See the examples below.

Installation

This package is on CRAN so install should be a simple:

install.packages('ggbeeswarm')

If you want the development version from GitHub, you can do:

devtools::install_github("eclarke/ggbeeswarm")

Examples

Here is a comparison between geom_jitter and geom_quasirandom on the iris dataset:

set.seed(12345)
library(ggplot2)
library(ggbeeswarm)
#compare to jitter
ggplot(iris,aes(Species, Sepal.Length)) + geom_jitter()
<img src="README_files/figure-gfm/ggplot2-compare-1.png" width="576" />
ggplot(iris,aes(Species, Sepal.Length)) + geom_quasirandom()
<img src="README_files/figure-gfm/ggplot2-compare-2.png" width="576" />

geom_quasirandom()

Using geom_quasirandom:

#default geom_quasirandom
ggplot(mpg,aes(class, hwy)) + geom_quasirandom()
<img src="README_files/figure-gfm/ggplot2-examples-1.png" width="576" />
# With categorical y-axis
ggplot(mpg,aes(hwy, class)) + geom_quasirandom(groupOnX=FALSE)
<img src="README_files/figure-gfm/ggplot2-examples-2.png" width="576" />
# Some groups may have only a few points. Use `varwidth=TRUE` to adjust width dynamically.
ggplot(mpg,aes(class, hwy)) + geom_quasirandom(varwidth = TRUE)
<img src="README_files/figure-gfm/ggplot2-examples-3.png" width="576" />
# Automatic dodging
sub_mpg <- mpg[mpg$class %in% c("midsize", "pickup", "suv"),]
ggplot(sub_mpg, aes(class, displ, color=factor(cyl))) + geom_quasirandom(dodge.width=1)
<img src="README_files/figure-gfm/ggplot2-examples-4.png" width="576" />

Alternative methods

geom_quasirandom can also use several other methods to distribute points. For example:

ggplot(iris, aes(Species, Sepal.Length)) + geom_quasirandom(method = "tukey") + ggtitle("Tukey texture")
<img src="README_files/figure-gfm/ggplot2-methods-1.png" width="576" />
ggplot(iris, aes(Species, Sepal.Length)) + geom_quasirandom(method = "tukeyDense") +
    ggtitle("Tukey + density")
<img src="README_files/figure-gfm/ggplot2-methods-2.png" width="576" />
ggplot(iris, aes(Species, Sepal.Length)) + geom_quasirandom(method = "frowney") +
    ggtitle("Banded frowns")
<img src="README_files/figure-gfm/ggplot2-methods-3.png" width="576" />
ggplot(iris, aes(Species, Sepal.Length)) + geom_quasirandom(method = "smiley") +
    ggtitle("Banded smiles")
<img src="README_files/figure-gfm/ggplot2-methods-4.png" width="576" />
ggplot(iris, aes(Species, Sepal.Length)) + geom_quasirandom(method = "pseudorandom") +
    ggtitle("Jittered density")
<img src="README_files/figure-gfm/ggplot2-methods-5.png" width="576" />
ggplot(iris, aes(Species, Sepal.Length)) + geom_beeswarm() + ggtitle("Beeswarm")
<img src="README_files/figure-gfm/ggplot2-methods-6.png" width="576" />

geom_beeswarm()

Using geom_beeswarm:

ggplot(iris,aes(Species, Sepal.Length)) + geom_beeswarm()
<img src="README_files/figure-gfm/ggplot2-beeswarm-1.png" width="576" />
ggplot(iris,aes(Species, Sepal.Length)) + geom_beeswarm(side = 1L)
<img src="README_files/figure-gfm/ggplot2-beeswarm-2.png" width="576" />
ggplot(mpg,aes(class, hwy)) + geom_beeswarm(size=.5)
<img src="README_files/figure-gfm/ggplot2-beeswarm-3.png" width="576" />
# With categorical y-axis
ggplot(mpg,aes(hwy, class)) + geom_beeswarm(size=.5)
<img src="README_files/figure-gfm/ggplot2-beeswarm-4.png" width="576" />
# Also watch out for points escaping from the plot with geom_beeswarm
ggplot(mpg,aes(hwy, class)) + geom_beeswarm(size=.5) + scale_y_discrete(expand=expansion(add=c(0.5,1)))
<img src="README_files/figure-gfm/ggplot2-beeswarm-5.png" width="576" />
ggplot(mpg,aes(class, hwy)) + geom_beeswarm(size=1.1)
<img src="README_files/figure-gfm/ggplot2-beeswarm-6.png" width="576" />
# With automatic dodging
ggplot(sub_mpg, aes(class, displ, color=factor(cyl))) + geom_beeswarm(dodge.width=0.5)
<img src="README_files/figure-gfm/ggplot2-beeswarm-7.png" width="576" />

Alternative methods

df <- data.frame(
  x = "A",
  y = sample(1:100, 200, replace = TRUE)
)
ggplot(df, aes(x = x, y = y)) + geom_beeswarm(cex = 2.5, method = "swarm") + ggtitle('method = "swarm" (default)')
<img src="README_files/figure-gfm/ggplot2-beeswarm-alt-1.png" width="576" />
ggplot(df, aes(x = x, y = y)) + geom_beeswarm(cex = 2.5, method = "compactswarm") + ggtitle('method = "compactswarm"')
<img src="README_files/figure-gfm/ggplot2-beeswarm-alt-2.png" width="576" />
ggplot(df, aes(x = x, y = y)) + geom_beeswarm(cex = 2.5, method = "hex") + ggtitle('method = "hex"')
<img src="README_files/figure-gfm/ggplot2-beeswarm-alt-3.png" width="576" />
ggplot(df, aes(x = x, y = y)) + geom_beeswarm(cex = 2.5, method = "square") + ggtitle('method = "square"')
<img src="README_files/figure-gfm/ggplot2-beeswarm-alt-4.png" width="576" />
ggplot(df, aes(x = x, y = y)) + geom_beeswarm(cex = 2.5, method = "center") + ggtitle('method = "center"')
<img src="README_files/figure-gfm/ggplot2-beeswarm-alt-5.png" width="576" />

Different point distribution priority

#With different beeswarm point distribution priority
dat<-data.frame(x=rep(1:3,c(20,40,80)))
dat$y<-rnorm(nrow(dat),dat$x)
ggplot(dat,aes(x,y)) + geom_beeswarm(cex=2) + ggtitle('Default (ascending)') + scale_x_continuous(expand=expansion(add=c(0.5,.5)))
<img src="README_files/figure-gfm/ggplot2-priority-1.png" width="576" />
ggplot(dat,aes(x,y)) + geom_beeswarm(cex=2,priority='descending') + ggtitle('Descending') + scale_x_continuous(expand=expansion(add=c(0.5,.5)))
<img src="README_files/figure-gfm/ggplot2-priority-2.png" width="576" />
ggplot(dat,aes(x,y)) + geom_beeswarm(cex=2,priority='density') + ggtitle('Density') + scale_x_continuous(expand=expansion(add=c(0.5,.5)))
<img src="README_files/figure-gfm/ggplot2-priority-3.png" width="576" />
ggplot(dat,aes(x,y)) + geom_beeswarm(cex=2,priority='random') + ggtitle('Random') + scale_x_continuous(expand=expansion(add=c(0.5,.5)))
<img src="README_files/figure-gfm/ggplot2-priority-4.png" width="576" />

Corral runaway points

set.seed(1995)
df2 <- data.frame(
  y = rnorm(1000),
  id = sample(c("G1", "G2", "G3"), size = 1000, replace = TRUE)
)
p <- ggplot(df2, aes(x = id, y = y, colour = id))

# use corral.width to control corral width
p + geom_beeswarm(cex = 2.5, corral = "none", corral.width = 0.9) + ggtitle('corral = "none" (default)')
<img src="README_files/figure-gfm/ggplot2-corral-1.png" width="576" />
p + geom_beeswarm(cex = 2.5, corral = "gutter", corral.width = 0.9) + ggtitle('corral = "gutter"')
<img src="README_files/figure-gfm/ggplot2-corral-2.png" width="576" />
p + geom_beeswarm(cex = 2.5, corral = "wrap", corral.width = 0.9) + ggtitle('corral = "wrap"')
<img src="README_files/figure-gfm/ggplot2-corral-3.png" width="576" />
p + geom_beeswarm(cex = 2.5, corral = "random", corral.width = 0.9) + ggtitle('corral = "random"')
<img src="README_files/figure-gfm/ggplot2-corral-4.png" width="576" />
p + geom_beeswarm(cex = 2.5, corral = "omit", corral.width = 0.9) + ggtitle('corral = "omit"')
## Warning: Removed 303 rows containing missing values (geom_point).
<img src="README_files/figure-gfm/ggplot2-corral-5.png" width="576" />

Authors: Erik Clarke, Scott Sherrill-Mix, and Charlotte Dawson