Awesome
DRAGON: From Generalized zero-shot learning to long-tail with class descriptors
Overview
DRAGON
learns to correct the bias towards head classes on a sample-by-sample basis; and fuse information from class-descriptions to improve the tail-class accuracy, as described in our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors".
Requirements
- numpy 1.15.4
- pandas 0.25.3
- scipy 1.1.0
- tensorflow 1.14.0
- keras 2.2.5
Quick installation under Anaconda:
conda env create -f requirements.yml
Data Preparation
Datasets: CUB, SUN and AWA.
Download data.tar
from here, untar it and place it under the project root directory.
DRAGON
| data
|--CUB
|--SUN
|--AWA1
| attribute_expert
| dataset_handler
| fusion
...
Train Experts and Fusion Module
Reproduce results for DRAGON
and its modules (Table 1 in our paper):
Training and evaluation should be according to the training protocol described in our paper (Section 5 - training):
-
First, train each expert without the hold-out set (partial training set) by executing the following commands:
- CUB:
# Visual-Expert training PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0003 --l2=0.005 # Attribute-Expert training PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=1e-7 --LG_lambda=0.0001 --SG_gain=3 --SG_psi=0.01 --SG_num_K=-1
- SUN:
# Visual-Expert training PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0001 --l2=0.01 # Attribute-Expert training PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=1e-6 --LG_lambda=0.001 --SG_gain=10 --SG_psi=0.01 --SG_num_K=-1
- AWA:
# Visual-Expert training PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0003 --l2=0.1 # Attribute-Expert training PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=0.001 --LG_lambda=0.001 --SG_gain=1 --SG_psi=0.01 --SG_num_K=-1
- CUB:
-
Then, re-train each expert, with the hold-out set (full train set) by executing above commands with the
--test_mode
flag as a parameter. -
Rename
Visual-lr=0.0003_l2=0.005
toVisual
andLAGO-lr=0.001_beta=1e-07_lambda=0.0001_gain=3.0_psi=0.01
toLAGO
(this is essential since theFusionModule
finds trained experts by their names, without extensions). -
Train the fusion-module on partially trained experts (models from step 1) by running the following commands:
- CUB:
PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --data_dir=data --initial_learning_rate=0.005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=2
- SUN:
PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --data_dir=data --initial_learning_rate=0.0005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=4
- AWA:
PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --data_dir=data --initial_learning_rate=0.005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=4
- CUB:
-
Finally, evaluate the fusion-module with fully-trained experts (models from step 2), by executing step 4 commands with the
--test_mode
flag as a parameter.
Pre-trained Models and Checkpoints
Download checkpoints.tar
from here, untar it and place it under the project root directory.
checkpoints
|--CUB
|--Visual
|--LAGO
|--Dual2ParametricRescale-lr=0.005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)
|--SUN
|--Visual
|--LAGO
|--Dual4ParametricRescale-lr=0.0005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)
|--AWA1
|--Visual
|--LAGO
|--Dual4ParametricRescale-lr=0.005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)
Cite Our Paper
If you find our paper and repo useful, please cite:
@InProceedings{samuel2020longtail,
author = {Samuel, Dvir and Atzmon, Yuval and Chechik, Gal},
title = {From Generalized Zero-Shot Learning to Long-Tail With Class Descriptors},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
year = {2021}}