Home

Awesome

ICCV paper of DualGAN

<a href="https://arxiv.org/abs/1704.02510">DualGAN: unsupervised dual learning for image-to-image translation</a>

please cite the paper, if the codes has been used for your research.

architecture of DualGAN

architecture

How to setup

Prerequisites

Getting Started

steps

git clone https://github.com/duxingren14/DualGAN.git

cd DualGAN
bash ./datasets/download_dataset.sh sketch-photo
bash ./checkpoint/download_ckpt.sh sketch-photo
python main.py --phase train --dataset_name sketch-photo --image_size 256 --lambda_A 1000.0 --lambda_B 1000.0 --epoch 100
python main.py --phase test --dataset_name sketch-photo --image_size 256 --lambda_A 1000.0 --lambda_B 1000.0 --epoch 100

optional

Similarly, run experiments on facades dataset with the following commands:

bash ./datasets/download_dataset.sh facades

python main.py --phase train --dataset_name facades --lambda_A 1000.0 --lambda_B 1000.0 --epoch 100

python main.py --phase test --dataset_name facades --lambda_A 1000.0 --lambda_B 1000.0 --epoch 100

For thoese who cannot download datasets or pretrained models using the scripts, please try manual downloading from the link as below:

<a href="https://drive.google.com/drive/folders/1i7hvUocQ5-u9K1QcD_NjIEKgkTWB7QMh?usp=sharing">all datasets from google drive</a>

<a href="https://drive.google.com/drive/folders/1H6t-JLe12_mP5T6bdwYxtXUQJD1WvL82?usp=sharing">pretrained models from google drive</a>

Experimental results:

day2night da2ni la2ph ph2la sk2ph ph2sk ch2oi oi2ch

Acknowledgments

Codes are built on the top of pix2pix-tensorflow and DCGAN-tensorflow. Thanks for their precedent contributions!